
Chapter 3

Sequences

Sequences are fundamental in real analysis and, while you may already be familiar with sequences,
it is useful to have a formal definition. We shall define a sequence to be just a function from the
set of natural numbers into the set of real numbers R.

Definition 3.0.1. A sequence is a function s : N ! R. We shall denote the value s(n) by s
n

,
where s

n

is called the n-th term of the sequence. We will write s as hs
n

i, as hs
1

, s
2

, s
3

, . . . i, or as
hs

n

i1
n=1

when we want to emphasize that the index variable n begins with 1.

· · · · · ·
· · · · · ·
· · · · · ·

1 2 3 4 5 6 7 8 9 10 11 · · · · · ·

Figure 3.1: Functional representation of a sequence: s(4) = s4 > 0 and s(6) = s6 < 0

Consider the sequence hs
n

i where s
n

= 1

n

. Then we can write hs
n

i as
⌦
1

n

↵
or as

⌦
1, 1

2

, 1

3

, 1

4

, . . .
↵
.

A constant sequence is denoted by hai or ha, a, a, a, . . . i, where a is a fixed real number.
One can also have sequences of the form hs

n

i1
n=k

= hs
k

, s
k+1

, . . . i where k > 1. However, one
can easily re-express this sequence as one starting at 1. Define ht

n

i1
n=1

by t
n

= s
n+k�1

for all n � 1.
Then ht

n

i1
n=1

= hs
k

, s
k+1

, . . . i. For example, h 1

n�1

i1
n=2

= h 1

n

i1
n=1

.

3.1 Convergence

The limit of a sequence is one of the oldest and among the most important concepts in mathematical
analysis. A sequence converges to the limit ` if the terms of the sequence get closer and closer to
the real number `. We now give a precise definition of this concept.

Definition 3.1.1. A sequence hs
n

i is said to converge to the real number ` provided that for all
" > 0 there exists a natural number N such that for all n 2 N, if n > N then |s

n

� `| < ".

Figure 3.2 illustrates Definition 3.1.1. If a sequence hs
n

i converges to `, then ` is called the
limit of the sequence hs

n

i and we write lim
n!1

s
n

= `. If a sequence hs
n

i does not converge, then we

shall say that hs
n

i diverges. The logical form of Definition 3.1.1 can be expressed as

(8" > 0)(9N 2 N)(8n 2 N)(n > N ! |s
n

� `| < ") (3.1)
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` + "

` � "
`

N
1 2 3 · · ·

· · ·

Figure 3.2: For all n > N we have |sn � `| < ".

and it is this logical form that motivates the following proof strategy.

Proof Strategy 3.1.2. To prove that lim
n!1

s
n

= `, we will use the proof diagram

Let " > 0 be an arbitrary real number.
Let N = (the natural number you found).

Let n > N be an arbitrary natural number.
Prove |s

n

� `| < ".

To apply proof strategy 3.1.2 on a specific sequence, first let " > 0. We must find a natural
number N such that when n > N , we can prove that |s

n

� `| < ". To find the desired N , we will
first attempt the following:

Using algebra and properties of inequality on the expression |s
n

� `|, ‘extract out’ a
larger value that resembles 1

n

.

We shall then use this larger value to find N so that when n > N we will have that |s
n

� `| < ".
We will illustrate this idea in our proof analysis of the next four theorems. Before we discuss these
theorems, we identify three properties of inequality that are very useful when proving theorems
about convergence.

Quotient Principles of Inequality 3.1.3. Let a, b, c, d be positive real numbers. Then:

(1) Given the ratio a

b

, you can conclude that a

b

< c

b

, if a < c.
(Replacing a numerator with a larger value yields a larger ratio.)

(2) Given the ratio a

b

, you can conclude that a

b

< a

d

, if d < b.
(Replacing a denominator with a smaller value yields a larger ratio.)

(3) Given the ratio a

b

, you can conclude that a

b

 c

d

, if a  c and d  b.
(Replacing a numerator with a larger value and denominator with a smaller value yields a larger ratio.)

Example 3.1.4. The property in the above 3.1.3(2) implies the following assertions:

1. 1

n

< 1

N

when n > N > 0.

2. 1p
n

< 1p
N

when n > N > 0, by Theorem 1.1.16 on page 11.

3. 1

2

n

< 1

n

when 2n > n > 0.

Theorem 3.1.5. lim
n!1

1

n

= 0.

Proof Analysis. We will be given " > 0 and we must find an N 2 N such that if n > N then�� 1
n

� 0
�� < ". Since

�� 1
n

� 0
�� = 1

n

, we need to find an N 2 N such that if n > N then 1

n

< ". Solving
the inequality 1

n

< " for n, we see that we must have that n > 1

"

. So if we take N > 1

"

, then we
will be able to prove the desired result. We can now compose a logically correct proof using proof
strategy 3.1.2 as a guide.
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Proof. Let " > 0. Let N > 1

"

be a natural number. Let n > N . We prove
�� 1
n

� 0
�� < " as follows:

����
1

n
� 0

���� =

����
1

n

���� by algebra

=
1

n
because

1

n
> 0

<
1

N
because n > N

<
1
1

"

because N >
1

"

= " by algebra.

Therefore,
�� 1
n

� 0
�� < ".

Theorem 3.1.6. lim
n!1

1p
n

= 0.

Proof Analysis. We will be given " > 0 and we must find an N 2 N such that if n > N then��� 1p
n

� 0
��� < ". Since

��� 1p
n

� 0
��� = 1p

n

, we need to find an N 2 N such that if n > N then 1p
n

< ".

Solving the inequality 1p
n

< " for n, we see that we must have that n > 1

"

2 . So if we take N > 1

"

2 ,

then we will be able to prove the desired result. We now compose a proof using proof strategy 3.1.2
as a guide.

Proof. Let " > 0. Let N > 1

"

2 be a natural number. Let n > N . Thus, 1p
n

< 1p
N

. We prove that��� 1p
n

� 0
��� < " as follows:

����
1p
n

� 0

���� =

����
1p
n

���� by algebra

=
1p
n

because
1p
n

> 0

<
1p
N

because n > N

<
1q
1

"

2

because N >
1

"2

= " by algebra.

Therefore,
��� 1p

n

� 0
��� < ".

Theorem. lim
n!1

1 + 1

2

n

= 1.

Proof Analysis. We will be given " > 0 and we must find an N 2 N such that if n > N then��1 + 1

2

n

� 1
�� < ". Since

��1 + 1

2

n

� 1
�� = 1

2

n

, we need to find an N 2 N such that if n > N then
1

2

n

< ". Solving the inequality 1

2

n

< " for n is di�cult and so, we take a di↵erent approach. It is
easy to show by induction (on n) that n < 2n and thus, 1

2

n

< 1

n

when n � 1. Thus, we will solve
the inequality 1

n

< " for n we obtain n > 1

"

. Therefore, if we take N > 1

"

, then we will be able to
prove the desired result. We now compose a proof using proof strategy 3.1.2 as a guide.

Proof. Let " > 0. Let N > 1

"

. Let n > N be a natural number. We prove that
��(1 + 1

2

n

) � 1
�� < "
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as follows:
����

✓
1 +

1

2n

◆
� 1

���� =

����
1

2n

���� by algebra

=
1

2n
because

1

2n
> 0

<
1

n
because n < 2n

<
1

N
because n > N

<
1
1

"

because N >
1

"

= " by algebra.

Therefore,
��1 + 1

2

n

� 1
�� < ".

In the above theorems, we were able to find the required N without much di�culty. Specific
sequences with more complicated definitions may require more work to find N . This work can be
reduced by correctly applying the Quotient Principles of Inequality 3.1.3.

Theorem. lim
n!1

2n+3

3n+5

= 2

3

.

Proof Analysis. We will be given " > 0 and we must find an N 2 N such that if n > N then���2n+3

3n+5

� 2

3

��� < ". We see that
���2n+3

3n+5

� 2

3

��� =
��� �1

9n+15

��� = 1

9n+15

, because 9n + 15 > 0 for n 2 N. So,

we need to find a natural number N such that if n > N then 1

9n+15

< ". One could now solve the

inequality 1

9n+15

< " for n, but we take an easier approach. Since 1

9n+15

< 1

9n

, we find a natural

number N such that if n > N then 1

9n

< ". Now, solving the inequality 1

9n

< " for n we obtain
n > 1

9"

. So, if we take N > 1

9"

, then we will be able to prove the desired result. We now compose
a proof using proof strategy 3.1.2 as a guide.

Proof. Let " > 0. Let N > 1

9"

be a natural number. Let n > N . Thus,

����
2n + 3

3n + 5
� 2

3

���� =

����
�1

9n + 15

���� by algebra.

=
1

9n + 15
because 9n + 15 > 0.

<
1

9n
because 9n < 9n + 15.

<
1

9 1

9"

because n > N >
1

9"

= " by algebra.

Therefore,
���2n+3

3n+5

� 2

3

��� < " and this completes the proof.

Remark 3.1.7. Suppose that you have a polynomial in n, say cnk + 6n3 � 10, with highest power
nk with positive coe�cient c > 0 and some negative coe�cients in the lower powers. To find an
s > 0 such that snk  cnk+6n3�10 for all large values of n, you can use any s such that 0 < s < c.

Example 3.1.8. Given " > 0, find N such that for all n > N , we have that
���n

2
+2n�3

n

2�n�5

� 1
��� < ".
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Solution. Let " > 0. We must find an N such that if n > N then
���n

2
+2n�3

n

2�n�5

� 1
��� < ". By algebra,

we obtain ����
n2 + 2n � 3

n2 � n � 5
� 1

���� =

����
3n + 2

n2 � n + 5

����

We see that 3n + 2 > 0 and n3 � n2 + 5 > 0 when n � 1. Thus, when n � 1, we have

����
3n + 2

n2 � n + 5

���� =
3n + 2

n2 � n + 5
.

We now need to find an N � 1 such that if n > N then 3n+2

n

2�n+5

< ". Solving the inequality
3n+2

n

2�n+5

< " for n is di�cult. So we shall take a di↵erent approach by taking advantage of the
Quotient Principles of Inequality 3.1.3. First, we will get a real number b > 0 such that

3n + 2  bn for all “large” n 2 N. (3.2)

Then we will get a real number s > 0 such that

sn2  n2 � n + 5 for all “large” n 2 N. (3.3)

To find the b in (3.2), notice that 3n + 2  3n + 2n = 5n for all n 2 N. So, we shall let b = 5. To
find s such that sn2  n2 � n + 5 for large values of n we must have 0 < s < 1 (see Remark 3.1.7).
Let us try s = 1

2

. We must find m so that 1

2

n2  n2 � n + 5 for all n � m. First, observe that

n2 � n  n2 � n + 5.

So we just need that 1

2

n2  n2 � n, which is equivalent to 0  n2 � 2n = n(n � 2). The latter
inequality holds for all n � 2. Therefore, for all n � 2 we have that

����
3n + 2

n2 � n + 5

���� =
3n + 2

n2 � n + 5
 5n

1

2

n2

=
10

n
.

Solving the inequality 10

n

< " for n, we see that we must have that N > max{10

"

, 2}.

Theorem. lim
n!1

n

2
+2n�3

n

2�n�5

= 1.

Proof. Let " > 0 be arbitrary. Let N > max{6

"

, 3}. Let n > N . Since n > 3, we have that

����
n2 + 2n � 3

n2 � n � 5
� 1

���� =
3n + 2

n2 � n + 5
,

because 3n + 2 > 0 and n3 � n2 + 5 > 0. In addition, as n > 2, we have that that 3n + 2  5n and
1

2

n2  n2 � n + 5. Therefore, because n > N > max{10

"

, 2}, we have that

����
n2 + 2n � 3

n2 � n � 5
� 1

���� =
3n + 2

n2 � n + 5
 5n

1

2

n2

=
10

n
<

10

N
<

10
10

"

= ".

This completes the proof.

Example 3.1.9. Given " > 0, find N such that for all n > N , we have that
��� 4n

2
+3

5n

2�2n

� 4

5

��� < ".
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Solution. Let " > 0. We must find an N such that if n > N then
���n

2
+2n�3

n

2�n�5

� 1
��� < ". By algebra,

we obtain ����
4n2 + 3

5n2 � 2n
� 4

5

���� =

����
8n + 15

25n2 � 10n

����

We see that 8n + 15 > 0 when n � 1, and 25n2 � 10n > 0 when n � 1. Thus, when n � 1, we have
����

4n2 + 3

5n2 � 2n
� 4

5

���� =
8n + 15

25n2 � 10n
.

We now need to find an N � 1 such that if n > N then 8n+15

25n

2�10n

< ". Solving the inequality
8n+15

25n

2�10n

< " for n is di�cult. So we shall take a di↵erent approach by taking advantage of the
Quotient Principles of Inequality 3.1.3. First, we will get a real number b > 0 such that

8n + 15  bn for all “large” n 2 N. (3.4)

Then we will get a real number s > 0 such that

sn2  25n2 � 10n for all “large” n 2 N. (3.5)

To find the b in (3.4), notice that 8n + 15  8n + 15n = 23n for all n 2 N. So, we shall let
b = 23. To find s such that sn2  25n2 � 10n for large values of n we must have 0 < s < 25 (see
Remark 3.1.7). Let us try s = 20. We must find m so that 20n2  25n2 � 10n for all n � m.
Observe that 20n2  25n2 � 10n is equivalent to 0  5n2 � 10n = 5n(n � 2). The latter inequality
holds for all n � 2. Therefore, for all n � 2 we have that

����
4n2 + 3

5n2 � 2n
� 4

5

���� =
8n + 15

25n2 � 10n
 23n

20n2

=
23

20n
.

Solving the inequality 23

20n

< " for n, we see that we must have that N > max{ 23

20"

, 2}.

Theorem. lim
n!1

n

2
+2n�3

n

2�n�5

= 4

5

.

Proof. Let " > 0 be arbitrary. Let N > max{ 23

20"

, 2}. Let n > N . Since n > 2, we have that

����
4n2 + 3

5n2 � 2n
� 4

5

���� =
8n + 15

25n2 � 10n
.

because 8n + 15 > 0 and 25n2 � 10n > 0. In addition, as n > 2, we have that that 8n + 15  23n
and 20n2  25n2 � 10n. Therefore, because n > N > max{ 23

20"

, 2}, we have that

����
4n2 + 3

5n2 � 2n
� 4

5

���� =
8n + 15

25n2 � 10n
 23n

20n2

=
23

20n
<

23

20N
<

23

20 23

20"

= ".

This completes the proof.

Suppose in a proof that you are assuming that a given sequence converges. Our next strategy
will be useful when dealing with such an assumption.

Assumption Strategy 3.1.10. Suppose you are assuming that lim
n!1

s
n

= `. Then for any " > 0

there is an N 2 N such that |s
n

� `| < " for all n > N .

Thus, in a proof, suppose that you are assuming that lim
n!1

s
n

= `. Using assumption strategy

3.1.10 you can conclude that for any positive value v > 0 there is an N such that for all n > N we
have that |s

n

� `| < v. We shall express this observation as “we can make |s
n

� `| as small as we
want.” We shall now apply this idea to prove the following theorem.
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Theorem 3.1.11. Suppose lim
n!1

s
n

= ` where ` > 0 and s
n

> 0 for all n � 1. Then lim
n!1

p
s
n

=
p

`.

Proof Analysis. In a proof of the above theorem, we shall be assuming that lim
n!1

s
n

= ` and we

must prove that lim
n!1

p
s
n

=
p

`. How can one apply proof strategy 3.1.2 and assumption strategy

3.1.10 to find such a proof? First of all, our proof will need to have the following logical structure:

Assume lim
n!1

s
n

= `.

Let " > 0 be an arbitrary real number.
Let N = (the natural number you found).

Let n > N be an arbitrary natural number.

Prove
���
p

s
n

�
p

`
��� < ".

We must find a natural number N such that if n > N , then
���
p

s
n

�
p

`
��� < ". We shall use the

assumption lim
n!1

s
n

= s to find the desired N . Here is the basic plan that we will apply to get N .

Using algebra and properties of inequality on the expression
���
p

s
n

�
p

`
���, we “extract

out” a larger value that contains |s
n

� `| and no other occurrences of s
n

.

Since lim
n!1

s
n

= `, we can make |s
n

� `| “as small as we want.” We should then be able to make
���
p

s
n

�
p

`
��� < " and find the N that we need. Let us now execute this plan! First we start with

���
p

s
n

�
p

`
��� and extract out |s

n

� `| as follows:

���
p

s
n

�
p

`
��� =

�����
(
p

s
n

�
p

`)

1

(
p

s
n

+
p

`)

(
p

s
n

+
p

`)

����� rationalizing the numerator.

=

�����
s
n

� `
p

s
n

+
p

`

����� by algebra.

=
|s

n

� `|
p

s
n

+
p

`
because

p
sn +

p
` > 0.

<
|s

n

� `|p
`

because
p

` <
p

sn +
p

`.

Thus, we started with
���
p

s
n

�
p

`
��� and we were able to extract out the larger value |s

n

�`|p
`

that

contains |s
n

� `| and no other occurrences of s
n

. Hence, we have that
���
p

s
n

�
p

`
��� < |s

n

�`|p
`

. Con-

sequently, if |s
n

�`|p
`

< ", then we will have that
���
p

s
n

�
p

`
��� < ". How small must |s

n

� `| be in

order to ensure that |s
n

�`|p
`

< "? To answer this question, we just solve this latter inequality for

|s
n

� `| to obtain |s
n

� `| < "
p

`. Hence, we need an N so that |s
n

� `| < "
p

` when n > N . Since
lim
n!1

s
n

= `, there is such an N . This is the value for N that we will use in our proof.

Proof of Theorem 3.1.11. Assume that lim
n!1

s
n

= ` where ` > 0 and s
n

> 0 for all n � 1. We shall

prove that lim
n!1

p
s
n

=
p

`. To do this, let " > 0. Since lim
n!1

s
n

= `, there is such an N such that



52 CHAPTER 3. SEQUENCES

(?) |s
n

� `| < "
p

` for all n > N . Let n > N . We will now prove that
���
p

s
n

�
p

`
��� < " as follows:

���
p

s
n

�
p

`
��� =

�����
(
p

s
n

�
p

`)

1

(
p

s
n

+
p

`)

(
p

s
n

+
p

`)

����� rationalizing the numerator.

=

�����
s
n

� `
p

s
n

+
p

`

����� by algebra.

=
|s

n

� `|
p

s
n

+
p

`
because

p
sn +

p
` > 0.

<
|s

n

� `|p
`

because
p

` <
p

sn +
p

`.

<
"
p

`p
`

by (?).

= " by algebra.

Therefore,
���
p

s
n

�
p

`
��� < " and this completes the proof.

Theorem 3.1.12 (Uniqueness of the Limit). If the sequence hs
n

i converges, then there is only one
limit of the sequence.

Proof. Suppose the sequence hs
n

i converges. To prove that there is only one limit of this sequence,
suppose that ` and `0 are both limits of the sequence hs

n

i. We shall prove that ` = `0. For a
contradiction, assume that ` 6= `0. Thus, we conclude that " = |` � `0| > 0. Since hs

n

i converges to
` there is an N 2 N such that for all n > N , |s

n

� `| < "

2

. Also, since hs
n

i converges to `0 there is
an N 0 2 N such that for all n > N 0, |s

n

� `0| < "

2

. Therefore, for all n > max{N, N 0} we have that

��` � `0
�� =

��(` � s
n

) + (s
n

� `0)
��  |` � s

n

| +
��s

n

� `0
�� <

"

2
+

"

2
= ".

Hence, |` � `0| < ". But this contradicts our conclusion that " = |` � `0|. This contradiction
completes the proof of the theorem.

Theorem 3.1.13. If hs
n

i is a sequence and ` 2 R, then lim
n!1

s
n

= ` if and only if lim
n!1

(s
n

� `) = 0.

Proof. Assume that lim
n!1

s
n

= `. We shall prove that lim
n!1

(s
n

� `) = 0. To do this, let " > 0.

Since lim
n!1

s
n

= `, there is an N 2 N where |s
n

� `| < " for all n > N . Let n > N . Thus

|(s
n

� `) � 0| = |s
n

� `| < " and thus lim
n!1

(s
n

� `) = 0. The converse follows similarly.

Suppose that you are assuming that a given sequence converges and you need to prove that
another sequence converges. The assumption strategy 3.1.10 will be useful when dealing with such
a proof. For example, many times we will be assuming that lim

n!1
s
n

= ` and will be working with

" > 0. Using assumption strategy 3.1.10 we can conclude for any positive "0 < " (for example,
"0 = "

2

) that there is an N 0 such that for all n > N 0 we we have |s
n

� `| < "0.

Theorem 3.1.14. Let hs
n

i, ha
n

i be sequences and let ` 2 R. If

(1) |s
n

� `|  k |a
n

| for all n � m, where k > 0 and m 2 N,

(2) lim
n!1

a
n

= 0,

then lim
n!1

s
n

= `.



3.1. CONVERGENCE 53

Proof Analysis. We will assume that |s
n

� `|  k |a
n

| for all n � m where k > 0 and m 2 N. We also
assume that lim

n!1
a
n

= 0 and thus, we can make |a
n

| = |a
n

� 0| ‘as small as we want.’ We will be

given " > 0 and we must find an N 2 N such that if n > N then |s
n

� `| < ". Since |s
n

� `|  k |a
n

|
when n � m, we need to find an N � m such that if n > N then k |a

n

| < ". Solving this latter
inequality for |a

n

|, we see that we must have that |a
n

| < "

k

. Since lim
n!1

a
n

= 0, there is an N 0 such

that whenever n > N 0 we have |a
n

� 0| = |a
n

| < "

k

. Thus, we will use N = max{N 0, m}. This will
ensure that when n > N we will have that n > N 0 and n > m.

Proof. Assuming (1) and (2) we shall prove that lim
n!1

s
n

= `. To do this, let " > 0. By (2) we

have that lim
n!1

a
n

= 0. Thus, there is an N 0 2 N such that (?) |a
n

� 0| = |a
n

| < "

k

for all n > N 0.

By (1), we have that (??) |s
n

� `|  k |a
n

| for all n � m. Let N = max{m, N 0}. Let n > N . Thus,

|s
n

� `|  k |a
n

| by (??) because n > N � m.

< k
⇣ "

k

⌘
by (?) because n > N � N 0.

= " by algebra.

Therefore |s
n

� `| < ". This completes the proof of the theorem.

Corollary 3.1.15. Let x be a such that |x| < 1. Then lim
n!1

xn = 0.

Proof. Let x be such that |x| < 1. If x = 0, then clearly lim
n!1

xn = 0. Assume that 0 < |x| < 1.

Since 1

|x| > 1, there is a c > 0 such that 1 + c = 1

|x| . By Bernoulli’s inequality (Exercise 5-page 28),

(1 + c)n � 1 + nc, for every n 2 N. Hence, 1

|x|n = (1 + c)n � 1 + nc > nc, for all n 2 N. So

|xn � 0| = |x|n <
1

nc
,

for all n � 1. As lim
n!1

1

n

= 0 and 1

c

> 0, Theorem 3.1.14 implies that lim
n!1

xn = 0.

The next corollary can be useful for proving that a particular sequence hu
n

i converges to r.

Corollary 3.1.16. Let hs
n

i be a sequence such that lim
n!1

s
n

= ` for a real number `. Let hu
n

i be

another sequence and a real number r satisfying |u
n

� r|  k |s
n

� `| for all n � m, for some k > 0
and m 2 N. Then lim

n!1
u
n

= r.

Proof. By Theorem 3.1.13 we have that lim
n!1

(s
n

� `) = 0. We are given that |u
n

� r|  k |s
n

� `|
for all n � m, for some k > 0 and m 2 N. Theorem 3.1.14 now implies that lim

n!1
u
n

= r.

Remark 3.1.17. Let hs
n

i be sequence and let ` 2 R. What does it mean to say that the sequence
hs

n

i does not converge to `? Taking the negation of the logical form (3.1), we conclude that the
statement “the sequence hs

n

i does not converge to `” means the following:

There is an " > 0 such that for all N 2 N there is an n > N such that |s
n

� `| � ".

Neighborhoods

Definition 3.1.18. Let x 2 R and let " > 0. The open interval (x � ", x + "), centered at x, is
called a neighborhood of x.

Let x be a real number and let U
"

be the neighborhood (x � ", x + ") of x where " > 0. Then
for any real number s we have that s 2 U

"

if and only if |s � x| < ". We shall write U to denote
a neighborhood of x when it is not important to specify ". The following theorem just states that
the notion of convergence can be expressed in terms of neighborhoods (see Figure 3.3).
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Theorem 3.1.19. Let hs
n

i be a sequence and let ` be a real number. Then the following are
equivalent:

1. The sequence hs
n

i converges to `.

2. For every " > 0 there exists an N 2 N such that for all n 2 N, if n > N then |s
n

� `| < ".

3. For every neighborhood U of ` there is an N 2 N so that for all n 2 N, if n > N then s
n

2 U .

( )
s1 s2 s3 s4 s5 sn

�
⇥�� ⇥+�

· · · · · ·

Figure 3.3: For all n > N we have |sn � `| < ".

Corollary 3.1.20. Let hs
n

i be a sequence of distinct points and suppose that hs
n

i converges to `.
Then every neighborhood of ` contains an infinite number of points from the sequence hs

n

i.
Proof. Let U be any neighborhood of `. Since the sequence hs

n

i converges to `, Theorem 3.1.19
states that there is an N 2 N such that for all n 2 N, if n > N then s

n

2 U . Therefore, an infinite
number of points from the sequence hs

n

i are in U .

Remark. Given a sequence hs
n

i that converges to `. Theorem 3.1.19 implies that for every neigh-
borhood U of ` there exists an N 2 N such that s

n

2 U for all n > N . We can say in this case that
the sequence hs

n

i is eventually in U .

Lemma 3.1.21. Assume that D ✓ R is dense in R. Let x be any real number. Then there is a
sequence hd

n

i that converges to x where d
n

2 D for all n � 1.

Proof. Since D ✓ R is dense in R, for each n 2 N there is a d
n

2 D such that d
n

is in the interval
(x� 1

n

, x+ 1

n

) and so, |x � d
n

| < 1

n

. Since lim
n!1

1

n

= 0, Theorem 3.1.14 implies that lim
n!1

d
n

= x.

Bounded Sequences

Definition 3.1.22. A sequence hs
n

i is bounded if there is are real numbers a and b such that
a  s

n

 b for all n 2 N.

Remark 3.1.23. A sequence hs
n

i is bounded if and only if there is an M > 0 so that |s
n

|  M
for all n 2 N (see Theorem 2.2.2).

Let hs
n

i be a sequence. Suppose there is an B > 0 and an N such that |s
n

|  B for all n > N .
Then one can conclude that the entire sequence is bounded; that is, that there is an M > 0 such
that |s

n

|  M for all n � 1. The following example illustrates this fact.

Example 3.1.24. Let hs
n

i be the sequence where s
n

= 2 + 1

n

where n � 1. Let B = s
10

= 2 + 1

10

.
Notice that for all n > 10 we have s

n

 B. But all of the values s
1

, . . . , s
10

are greater than B. Let
M = max{s

1

, . . . , s
10

, B} = 3. We now have that s
n

 3 for all n � 1. Thus, the sequence hs
n

i is
bounded.

Theorem 3.1.25. Let hs
n

i be a convergent sequence. Then the sequence hs
n

i is bounded.

Proof. Suppose that lim
n!1

s
n

= `. Thus, for all " > 0 there is an N 2 N such that |s
n

� `| < " for

all n > N . So, lets take " = 1 and let N 2 N be so that |s
n

� `| < 1 for all n > N . Thus,

|s
n

| � |`|  |s
n

� `| < 1

for all n > N . Hence, |s
n

| < |`| + 1 for all n > N . Let

M = max{|s
1

| , . . . , |s
N

| , |`| + 1} .

Therefore, hs
n

i is a bounded sequence.
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Remark 3.1.26. If a sequence hs
n

i is unbounded, then the sequence hs
n

i diverges.

Example 3.1.27. Consider the sequence hs
n

i where s
n

=
nP

k=1

1

k

= 1+ 1

2

+ 1

3

+ · · ·+ 1

n

. Now imagine

n to be very large and write

s
n

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · +

1

n

= 1 +
1

2
+

✓
1

3
+

1

4

◆
+

✓
1

5
+

1

6
+

1

7
+

1

8

◆
+

✓
1

9
+ · · · +

1

16

◆
+ · · · +

1

n

> 1 +
1

2
+

✓
1

4
+

1

4

◆
+

✓
1

8
+

1

8
+

1

8
+

1

8

◆
+

✓
1

16
+ · · · +

1

16

◆
+ · · · +

1

n

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · · +

1

n
.

It is clear that by taking n su�ciently large we can introduce as many 1

2

’s, in the this sum, as we
wish. Therefore, the sequence hs

n

i is unbounded and so, it diverges.

Remark 3.1.28. Suppose that the sequence hs
n

i converges to `. Then for " > 0 there is an N 2 N
such that

|s
n

� `| < " for all n > N .

So, for any K > N we can also conclude that

|s
n

� `| < " for all n > K.

Exercises 3.1

1. Using Axiom O4 of the ordered field axioms on page 30 and Theorem 1.1.18 on page 11, prove
the three properties of inequality stated in 3.1.3.

2. Let a 2 R. Prove that the sequence
⌦
a + (�1)n 2n+1

n

↵
is bounded.

3. Let k > 0. Use Definition 3.1.1 to prove that lim
n!1

k

n

= 0.

4. Use Definition 3.1.1 to prove that lim
n!1

n+1

n+2

= 1.

5. Use Definition 3.1.1 to prove that lim
n!1

3n

n+2

= 3.

6. Use Definition 3.1.1 to prove that lim
n!1

6n�7

3n�2

= 2.

7. Use Definition 3.1.1 to prove that lim
n!1

6n�7

2n�7

= 3.

8. Prove that the limits given in Exercises 4–7 hold by applying Theorems 3.1.14 and 3.1.5.

9. Prove Theorem 3.1.11 using Corollary 3.1.16.

10. Let hs
n

i be a convergent sequence. Suppose lim
n!1

s
n

= ` and let c 2 R be a constant. Prove

that lim
n!1

c + s
n

= c + `.

11. Let hs
n

i be a convergent sequence. Suppose lim
n!1

s
n

= ` and let c 2 R be a nonzero constant.

Prove that lim
n!1

(cs
n

) = c`.

12. Suppose that lim
n!1

s
n

= `. Prove that lim
n!1

|s
n

| = |`|.

13. Suppose that lim
n!1

|s
n

| = 0. Prove that lim
n!1

s
n

= 0.
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14. Suppose that lim
n!1

s
n

= ` and |s
n

|  M for all n � 1, where M > 0. Prove that lim
n!1

s
n

2 = `2.

15. Let c 2 R be constant. Prove that lim
n!1

c = c.

16. Let hx
n

i and hy
n

i be two convergent sequences. Prove that there exists an M > 0 such that
|x

n

|  M and |y
n

|  M for all n � 1.

17. Let hs
n

i a convergent sequence. Suppose that lim
n!1

s
n

= `. Prove that there exists an M > 0

such that |s
n

+ `|  M for all n � 1.

18. Use Theorems 3.1.14 and 3.1.5 to prove that lim
n!1

sin(n)

n

= 0.

19. Use Theorem 3.1.14 and Theorem 3.1.6 to prove that lim
n!1

(
p

n + 1 �
p

n) = 0.

20. Let hs
n

i a convergent sequence. Suppose that lim
n!1

s
n

= `. Prove that lim
n!1

s2
n

= `2.

21. Let x be a such that |x| > 1. Prove that the sequence hxni is not bounded.

Exercise Notes: For Exercise 6, observe that n  3n � 2 when n � 1. For Exercise 7, observe that
n < |2n � 7| when n > 7. In this case, we would need N to be at least 7 and so, N > max{7, 14

"

}
could be used in the proof. For Exercise 19, show that

��pn + 1 �
p

n
�� = 1p

n+1+

p
n

 1

2

p
n

. For

Exercise 21, see the proof of Corollary 3.1.15.

3.2 Limit Theorems for Sequences

What are Limit Theorems? A Limit Theorem states that if you know the limits of some given
sequences, then you can determine the limit of a new sequence that is related to the given sequences.
Limit theorems have the form:

Theorem. Suppose we are given that lim
n!1

s
n

= s and lim
n!1

t
n

= t. Then one can evaluate the

limit of a new sequence, say lim
n!1

u
n

= u, which is constructed from the given sequences.

How does one prove theorems that have this form? We are assuming that lim
n!1

s
n

= s and

lim
n!1

t
n

= t, and we must prove that lim
n!1

u
n

= u.

Proof Diagram 3.2.1. To prove that lim
n!1

u
n

= u, our proof must contain the structure

Assume lim
n!1

s
n

= s.

Assume lim
n!1

t
n

= t.

Let " > 0 be an arbitrary real number.
Let N = (the natural number you found).

Let n > N be an arbitrary natural number.
Prove |u

n

� u| < ".

Let " > 0 be given. We must find a natural number N such that if n > N then |u
n

� u| < ". We
can use the assumptions lim

n!1
s
n

= s and lim
n!1

t
n

= t, to find the desired N . Here is the basic idea

that we will apply to get N .

Using algebra and properties of inequality on the expression |u
n

� u|, we “extract out”
a larger value containing |s

n

� s| and |t
n

� t|, and no other occurrences of s
n

or t
n

.


