3.3 Linear Congruence Equations

Definition 3.3.1. Let a_1, a_2, \ldots, a_k, b be known integers. An equation of the form

$$a_1x_1 + a_2x_2 + \cdots + a_kx_k \equiv b \pmod{n}$$

with unknowns x_1, x_2, \ldots, x_k is called a **linear congruence equation** in k variables.

An example of a linear congruence equation $ax + by + cz \equiv e \pmod{n}$ in the 3 variables x, y, z follows:

Example 1. Consider the linear congruence equation

$$2x + 3y - z \equiv 5 \pmod{11}.$$

Note that x = 4, y = 3, z = 1 is a solution to this congruence equation. Furthermore, for any integers i, j, k if $i \equiv 4 \pmod{11}$, $j \equiv 3 \pmod{11}$ and $k \equiv 1 \pmod{11}$, then x = i, y = j, z = k will also be a solution to the above congruence equation.

Definition 3.3.2. Let $n \ge 1$. We shall write $x \equiv a_1, a_2, \ldots, a_k \pmod{n}$ to mean that $x \equiv a_i \pmod{n}$ for some integer a_i in the list a_1, a_2, \ldots, a_k .

Example 2. We write $x \equiv 2, 4, 6 \pmod{8}$ to mean either $x \equiv 2 \pmod{8}$ or $x \equiv 4 \pmod{8}$ or $x \equiv 6 \pmod{8}$.

Theorem 3.3.3 (Expand-Collapse Theorem). Let d and k be any positive integers. Then for an integer x the following statements are equivalent:

(1) $x \equiv a \pmod{k}$

(2)
$$x \equiv a, a+k, a+2k, \dots, a+(d-1)k \pmod{dk}$$
.

Proof. We shall prove that (1) and (2) are equivalent. First we prove that (1) implies (2), and then we will prove that (2) implies (1).

 $(1) \Rightarrow (2)$: Assume $x \equiv a \pmod{k}$. Since $x \equiv a \pmod{k}$, there is an integer *i* such that (*) x = a + ik. By the Division Algorithm, we can write (**) i = qd + r for some integers *q* and *r* where $0 \leq r < d$. By substituting (**) for *i* in equation (*) we obtain

$$x = a + ik = a + (qd + r)k = a + q(dk) + rk = a + rk + q(dk)$$

and so, x = a + rk + q(dk) where $0 \le r < d$. Thus, $x \equiv a + rk \pmod{dk}$ with $0 \le r < d$. Therefore, $x \equiv a, a + k, a + 2k, \ldots, a + (d-1)k \pmod{dk}$.

(2) \Rightarrow (1): Assume $x \equiv a, a + k, a + 2k, \dots, a + (d - 1)k \pmod{dk}$. Suppose that $x \equiv a + jk \pmod{dk}$ for some $0 \le j < d$. Then $dk \mid (x - a - jk)$. Thus, $k \mid (x - a - jk)$ and so, $x - a - jk \equiv 0 \pmod{k}$. Hence, $x \equiv a + jk \pmod{k}$. Because $jk \equiv 0 \pmod{k}$, we conclude that $x \equiv a \pmod{k}$.

Remark 3.3.4. Given the congruence (\star) $x \equiv a_1, a_2, \ldots a_k \pmod{n}$, suppose that (1) $k \mid n$, (2) $a_i - a_{i-1} = d$ for all $1 < i \le k$, and (3) $d \mid n$. Then (\star) is equivalent to $x \equiv a_1 \pmod{\frac{n}{k}}$.

Example 3. For any integer x, Theorem 3.3.3 asserts that

- (i) $x \equiv 2 \pmod{4}$ if and only if $x \equiv 2, 6 \pmod{8}$, where a = 2, d = 2, k = 4;
- (ii) $x \equiv 4 \pmod{6}$ if and only if $x \equiv 4, 10, 16 \pmod{18}$, where a = 4, d = 3, k = 6;
- (iii) $x \equiv 7 \pmod{8}$ if and only if $x \equiv 7, 15, 23, 31, 39 \pmod{40}$, where a = 7, d = 5, k = 8.

One Linear Congruence Equation in One Variable

In Example 7 of Section 3.2 we solved the congruence equation

$$4x \equiv 6 \pmod{15} \tag{3.10}$$

and derived the solution $x \equiv 9 \pmod{15}$ to equation (3.10). Thus, $4 \cdot 9 \equiv 6 \pmod{15}$. Furthermore, our derivation establishes that any integer x is a solution to (3.10) if and only if $x \equiv 9 \pmod{15}$. Thus, we shall say the solution to equation (3.10) is unique (mod 15).

Consider the congruence equation

$$2x \equiv 4 \pmod{8}.\tag{3.11}$$

After checking the residue system 0, 1, 2, 3, 4, 5, 6, 7 for solutions to (3.11) we see that x = 2and x = 6 are the only solutions in this list. It follows that an integer x is a solution to (3.11) if and only if $x \equiv 2, 6 \pmod{8}$. Thus, we can say that the solution to (3.11) is given by $x \equiv 2, 6 \pmod{8}$. Example 3(i) states that $x \equiv 2, 6 \pmod{8}$ if and only if $x \equiv 2 \pmod{4}$. Thus, an integer x is a solution to (3.11) if and only if $x \equiv 2 \pmod{4}$. We can now say that the solution to (3.11) is unique (mod 4).

Remark. Before we state and prove our next theorem, consider the general congruence equation (*) $ax \equiv b \pmod{n}$ and suppose that x_0 is a solution to this equation. Let d = (a, n). Suppose that an integer x is a solution to (*) if and only if $x \equiv x_0 \pmod{\frac{n}{d}}$. Then, in this case, we shall say that the solution is unique $(\mod \frac{n}{d})$.

Theorem 3.3.5. Consider the linear congruence equation

$$ax \equiv b \pmod{n} \tag{3.12}$$

in the unknown x. Let d = (a, n). Then equation (3.12) has solutions if and only if $d \mid b$. Furthermore, if $d \mid b$ then the solution to (3.12) is unique (mod $\frac{n}{d}$). Consequently, if (a, n) = 1 then equation (3.12) has a solution and it is unique (mod n).

Proof. Note that a, b, n are fixed integers with $n \ge 1$. Let d = (a, n). The equation $ax \equiv b \pmod{n}$ has a solution for x if and only if there are integers x and y satisfying

$$ax - ny = b. \tag{3.13}$$

Theorem 2.5.1 implies that the Diophantine equation (3.13) has a solution if and only if $d \mid b$. Furthermore, if $d \mid b$, then Theorem 2.5.1 states that there is a solution x_0, y_0 to (3.13) and that every such solution x, y can be put into the form

$$x = x_0 + t \frac{n}{d}$$
 and $y = y_0 + t \frac{a}{d}$

for some integer t. Hence, every solution x to (3.12) satisfies $x - x_0 = t \frac{n}{d}$ for some integer t. Consequently, every such solution x satisfies $x \equiv x_0 \pmod{\frac{n}{d}}$ and therefore, the solution to (3.12) is unique (mod $\frac{n}{d}$). Suppose that you perform a derivation to solve a linear congruence equation of the form $ax \equiv b \pmod{n}$. If you happen to multiply a relevant congruence equation [see Theorem 3.2.3(3)] by a integer c where (c, n) > 1, then your final answer may obtain some extraneous values that are not solutions to the original congruence equation $ax \equiv b \pmod{n}$. As a very simple example of this phenomena, consider the congruence equation $2x \equiv 3 \pmod{5}$ together with the following derivation:

(1) $2x \equiv 3 \pmod{5}$ the given congruence equation (2) $10x \equiv 15 \pmod{5}$ $5 \times (1).$

Equation (2) was derived from equation (1). Therefore, every solution to (1) will also be a solution to (2). However, equation (2) holds for every integer x, whereas (1) holds only when $x \equiv 4 \pmod{5}$. Thus, the above derivation has introduced extraneous values that are not solutions to the original congruence equation $2x \equiv 3 \pmod{5}$.

Important Remark. Correct derivations will produce a true solution to a congruence equation. However, derivations can sometimes produce additional values that are not solutions. After solving a congruence equation, be sure to check your answers.

In the next example we will solve the congruence equation $7x \equiv 22 \pmod{39}$. A solution to this congruence equation is given on the bottom of page 69 and the top of page 70 of the text. The derivation given in the text introduces a "hidden" factor of 6. Since (6, 39) = 3, the solution introduces extraneous values that are not solutions to $7x \equiv 22 \pmod{39}$. We shall give the 'same' derivation as that presented in the text but where the "hidden" factor of 6 is exposed (see line (3) below).

Example 4. Solve the congruence equation $7x \equiv 22 \pmod{39}$.

Solution. Since (7, 39) = 1, Theorem 3.3.5 states that the equation $7x \equiv 22 \pmod{39}$ has a solution and that this solution is unique (mod 39). Consider the following derivation:

(1)	$7x \equiv 22 (\mathrm{mod}\ 39)$	the given congruence equation
(2)	$-39x \equiv 0 \pmod{39}$	a true congruence
(3)	$42x \equiv 132 (\mathrm{mod}\ 39)$	$6 \times (1)$
(4)	$3x \equiv 132 (\mathrm{mod}\ 39)$	(1) + (2)
(5)	$0 \equiv 117 (\mathrm{mod} \ 39)$	a true congruence; since $3 \cdot 39 = 117$
(6)	$3x \equiv 15 (\mathrm{mod}\ 39)$	(4) - (5).
(7)	$x \equiv 5 \pmod{13}$	(6) and Theorem 3.2.7.

Note that $x \equiv 5 \pmod{13}$ is equivalent to $x \equiv 5, 18, 31 \pmod{39}$ by Theorem 3.3.3. Since the solution to $7x \equiv 22 \pmod{39}$ is unique (mod 39), two of these values are not solutions to the original congruence equation $7x \equiv 22 \pmod{39}$. One can check that $x \equiv 31 \pmod{39}$ is the desired solution. Thus, $x \equiv 5, 18 \pmod{39}$ are two values that are not solutions to the original congruence equation. As a further note, one can solve $7x \equiv 22 \pmod{39}$ by performing a derivation that does not add any extraneous values as follows:

(1)	$7x \equiv 22 (\mathrm{mod}\ 39)$	the given congruence equation
(2)	$78x \equiv 0 \pmod{39}$	a true congruence; since $2 \cdot 39 = 78$
(3)	$77x \equiv 242 (\mathrm{mod}\ 39)$	$11 \times (1)$
(4)	$x \equiv -242 (\mathrm{mod}\ 39)$	(2) - (3)
(5)	$0 \equiv 273 (\mathrm{mod}\ 39)$	a true congruence; since $7 \cdot 39 = 273$
(6)	$x \equiv 31 \pmod{39}$	(4) + (5).

This completes our discussion of Example 4.

A Systematic Method

The proof of Theorem 3.3.5 provides a systematic method, using the Euclidean Algorithm, for deriving a solution for x in the linear congruence equation

$$ax \equiv b \pmod{n}.\tag{3.14}$$

Let d = (a, n) and suppose that d | b. Let b = de for some integer e. Using the Euclidean Algorithm find integers r and s satisfying ra + sn = d. Now we perform the following derivation:

(1)	$ax \equiv b \pmod{n}$	the given congruence equation
(2)	$nx \equiv 0 \pmod{n}$	a true congruence
(3)	$rax \equiv rb (\mathrm{mod} n)$	$r \times (1)$
(4)	$snx \equiv 0 \pmod{n}$	$s \times (2)$
(5)	$(ra + sn)x \equiv br \pmod{n}$	(3) + (4)
(6)	$dx \equiv der (\mathrm{mod}\ n)$	because $d = ra + sn$ and $b = de$
(7)	$x \equiv er \left(\mod \frac{n}{d} \right)$	by Theorem 3.2.7 if $d > 1$

Let $x_0 = er$. Theorem 3.3.5 states that the solution to (3.14) is unique (mod $\frac{n}{d}$). It now follows that an integer x is a solution to (3.14) if and only if $x \equiv x_0 \pmod{\frac{n}{d}}$.

Exercises 3.3

Do problems #1-6 on page 76 of text.

EXERCISE NOTES. For Problems 1–6 you must solve these congruence equations by means of derivations as those given in these notes (see Example 4 above, for examples).