3.3 Linear Congruence Equations

Definition 3.3.1. Let $a_{1}, a_{2}, \ldots, a_{k}, b$ be known integers. An equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots a_{k} x_{k} \equiv b(\bmod n)
$$

with unknowns $x_{1}, x_{2}, \ldots, x_{k}$ is called a linear congruence equation in k variables.
An example of a linear congruence equation $a x+b y+c z \equiv e(\bmod n)$ in the 3 variables x, y, z follows:
Example 1. Consider the linear congruence equation

$$
2 x+3 y-z \equiv 5(\bmod 11)
$$

Note that $x=4, y=3, z=1$ is a solution to this congruence equation. Furthermore, for any integers i, j, k if $i \equiv 4(\bmod 11), j \equiv 3(\bmod 11)$ and $k \equiv 1(\bmod 11)$, then $x=i, y=j, z=k$ will also be a solution to the above congruence equation.
Definition 3.3.2. Let $n \geq 1$. We shall write $x \equiv a_{1}, a_{2}, \ldots, a_{k}(\bmod n)$ to mean that $x \equiv a_{i}(\bmod n)$ for some integer a_{i} in the list $a_{1}, a_{2}, \ldots, a_{k}$.
Example 2. We write $x \equiv 2,4,6(\bmod 8)$ to mean either $x \equiv 2(\bmod 8)$ or $x \equiv 4(\bmod 8)$ or $x \equiv 6(\bmod 8)$.
Theorem 3.3.3 (Expand-Collapse Theorem). Let d and k be any positive integers. Then for an integer x the following statements are equivalent:
(1) $x \equiv a(\bmod k)$
(2) $x \equiv a, a+k, a+2 k, \ldots, a+(d-1) k(\bmod d k)$.

Proof. We shall prove that (1) and (2) are equivalent. First we prove that (1) implies (2), and then we will prove that (2) implies (1).
$(1) \Rightarrow(2)$: Assume $x \equiv a(\bmod k)$. Since $x \equiv a(\bmod k)$, there is an integer i such that $(*) x=a+i k$. By the Division Algorithm, we can write $(* *) i=q d+r$ for some integers q and r where $0 \leq r<d$. By substituting $(* *)$ for i in equation $(*)$ we obtain

$$
x=a+i k=a+(q d+r) k=a+q(d k)+r k=a+r k+q(d k)
$$

and so, $x=a+r k+q(d k)$ where $0 \leq r<d$. Thus, $x \equiv a+r k(\bmod d k)$ with $0 \leq r<d$. Therefore, $x \equiv a, a+k, a+2 k, \ldots, a+(d-1) k(\bmod d k)$.
$(2) \Rightarrow(1)$: Assume $x \equiv a, a+k, a+2 k, \ldots, a+(d-1) k(\bmod d k)$. Suppose that $x \equiv a+j k(\bmod d k)$ for some $0 \leq j<d$. Then $d k \mid(x-a-j k)$. Thus, $k \mid(x-a-j k)$ and so, $x-a-j k \equiv 0(\bmod k)$. Hence, $x \equiv a+j k(\bmod k)$. Because $j k \equiv 0(\bmod k)$, we conclude that $x \equiv a(\bmod k)$.
Remark 3.3.4. Given the congruence $(\star) x \equiv a_{1}, a_{2}, \ldots a_{k}(\bmod n)$, suppose that (1) $k \mid n$, (2) $a_{i}-a_{i-1}=d$ for all $1<i \leq k$, and (3) $d \mid n$. Then (\star) is equivalent to $x \equiv a_{1}\left(\bmod \frac{n}{k}\right)$.

Example 3. For any integer x, Theorem 3.3.3 asserts that
(i) $x \equiv 2(\bmod 4)$ if and only if $x \equiv 2,6(\bmod 8)$, where $a=2, d=2, k=4$;
(ii) $x \equiv 4(\bmod 6)$ if and only if $x \equiv 4,10,16(\bmod 18)$, where $a=4, d=3, k=6$;
(iii) $x \equiv 7(\bmod 8)$ if and only if $x \equiv 7,15,23,31,39(\bmod 40)$, where $a=7, d=5, k=8$.

One Linear Congruence Equation in One Variable

In Example 7 of Section 3.2 we solved the congruence equation

$$
\begin{equation*}
4 x \equiv 6(\bmod 15) \tag{3.10}
\end{equation*}
$$

and derived the solution $x \equiv 9(\bmod 15)$ to equation (3.10). Thus, $4 \cdot 9 \equiv 6(\bmod 15)$. Furthermore, our derivation establishes that any integer x is a solution to (3.10) if and only if $x \equiv 9(\bmod 15)$. Thus, we shall say the solution to equation (3.10) is unique $(\bmod 15)$.

Consider the congruence equation

$$
\begin{equation*}
2 x \equiv 4(\bmod 8) \tag{3.11}
\end{equation*}
$$

After checking the residue system $0,1,2,3,4,5,6,7$ for solutions to (3.11) we see that $x=2$ and $x=6$ are the only solutions in this list. It follows that an integer x is a solution to (3.11) if and only if $x \equiv 2,6(\bmod 8)$. Thus, we can say that the solution to (3.11) is given by $x \equiv 2,6(\bmod 8)$. Example $3(\mathrm{i})$ states that $x \equiv 2,6(\bmod 8)$ if and only if $x \equiv 2(\bmod 4)$. Thus, an integer x is a solution to (3.11) if and only if $x \equiv 2(\bmod 4)$. We can now say that the solution to (3.11) is unique $(\bmod 4)$.

Remark. Before we state and prove our next theorem, consider the general congruence equation $(*) a x \equiv b(\bmod n)$ and suppose that x_{0} is a solution to this equation. Let $d=(a, n)$. Suppose that an integer x is a solution to $(*)$ if and only if $x \equiv x_{0}\left(\bmod \frac{n}{d}\right)$. Then, in this case, we shall say that the solution is unique $\left(\bmod \frac{n}{d}\right)$.

Theorem 3.3.5. Consider the linear congruence equation

$$
\begin{equation*}
a x \equiv b(\bmod n) \tag{3.12}
\end{equation*}
$$

in the unknown x. Let $d=(a, n)$. Then equation (3.12) has solutions if and only if $d \mid b$. Furthermore, if $d \mid b$ then the solution to (3.12) is unique $\left(\bmod \frac{n}{d}\right)$. Consequently, if $(a, n)=1$ then equation (3.12) has a solution and it is unique $(\bmod n)$.

Proof. Note that a, b, n are fixed integers with $n \geq 1$. Let $d=(a, n)$. The equation $a x \equiv$ $b(\bmod n)$ has a solution for x if and only if there are integers x and y satisfying

$$
\begin{equation*}
a x-n y=b . \tag{3.13}
\end{equation*}
$$

Theorem 2.5.1 implies that the Diophantine equation (3.13) has a solution if and only if $d \mid b$. Furthermore, if $d \mid b$, then Theorem 2.5.1 states that there is a solution x_{0}, y_{0} to (3.13) and that every such solution x, y can be put into the form

$$
x=x_{0}+t \frac{n}{d} \text { and } y=y_{0}+t \frac{a}{d}
$$

for some integer t. Hence, every solution x to (3.12) satisfies $x-x_{0}=t \frac{n}{d}$ for some integer t. Consequently, every such solution x satisfies $x \equiv x_{0}\left(\bmod \frac{n}{d}\right)$ and therefore, the solution to (3.12) is unique $\left(\bmod \frac{n}{d}\right)$.

Suppose that you perform a derivation to solve a linear congruence equation of the form $a x \equiv b(\bmod n)$. If you happen to multiply a relevant congruence equation [see Theorem 3.2.3(3)] by a integer c where $(c, n)>1$, then your final answer may obtain some extraneous values that are not solutions to the original congruence equation $a x \equiv b(\bmod n)$. As a very simple example of this phenomena, consider the congruence equation $2 x \equiv 3(\bmod 5)$ together with the following derivation:

$$
\begin{align*}
2 x & \equiv 3(\bmod 5) & & \text { the given congruence equation } \tag{1}\\
10 x & \equiv 15(\bmod 5) & & 5 \times(1) .
\end{align*}
$$

Equation (2) was derived from equation (1). Therefore, every solution to (1) will also be a solution to (2). However, equation (2) holds for every integer x, whereas (1) holds only when $x \equiv 4(\bmod 5)$. Thus, the above derivation has introduced extraneous values that are not solutions to the original congruence equation $2 x \equiv 3(\bmod 5)$.

Important Remark. Correct derivations will produce a true solution to a congruence equation. However, derivations can sometimes produce additional values that are not solutions. After solving a congruence equation, be sure to check your answers.

In the next example we will solve the congruence equation $7 x \equiv 22(\bmod 39)$. A solution to this congruence equation is given on the bottom of page 69 and the top of page 70 of the text. The derivation given in the text introduces a "hidden" factor of 6 . Since $(6,39)=3$, the solution introduces extraneous values that are not solutions to $7 x \equiv 22(\bmod 39)$. We shall give the 'same' derivation as that presented in the text but where the "hidden" factor of 6 is exposed (see line (3) below).

Example 4. Solve the congruence equation $7 x \equiv 22(\bmod 39)$.
Solution. Since $(7,39)=1$, Theorem 3.3.5 states that the equation $7 x \equiv 22(\bmod 39)$ has a solution and that this solution is unique $(\bmod 39)$. Consider the following derivation:

$$
\begin{align*}
7 x & \equiv 22(\bmod 39) & & \text { the given congruence equation } \tag{1}\\
-39 x & \equiv 0(\bmod 39) & & \text { a true congruence } \tag{2}\\
42 x & \equiv 132(\bmod 39) & & 6 \times(1) \tag{3}\\
3 x & \equiv 132(\bmod 39) & & (1)+(2) \tag{4}\\
0 & \equiv 117(\bmod 39) & & \text { a true congruence; since } 3 \cdot 39=117 \tag{5}\\
3 x & \equiv 15(\bmod 39) & & (4)-(5) . \\
x & \equiv 5(\bmod 13) & & (6) \text { and Theorem } 3.2 .7 \tag{6}
\end{align*}
$$

Note that $x \equiv 5(\bmod 13)$ is equivalent to $x \equiv 5,18,31(\bmod 39)$ by Theorem 3.3.3. Since the solution to $7 x \equiv 22(\bmod 39)$ is unique $(\bmod 39)$, two of these values are not solutions to the original congruence equation $7 x \equiv 22(\bmod 39)$. One can check that $x \equiv 31(\bmod 39)$ is the desired solution. Thus, $x \equiv 5,18(\bmod 39)$ are two values that are not solutions to the original congruence equation.

As a further note, one can solve $7 x \equiv 22(\bmod 39)$ by performing a derivation that does not add any extraneous values as follows:

$$
\begin{align*}
7 x & \equiv 22(\bmod 39) \tag{1}\\
78 x & \equiv 0(\bmod 39) \tag{2}\\
77 x & \equiv 242(\bmod 39) \tag{3}\\
x & \equiv-242(\bmod 39) \tag{4}\\
0 & \equiv 273(\bmod 39) \tag{5}\\
x & \equiv 31(\bmod 39) \tag{6}
\end{align*}
$$

the given congruence equation
a true congruence; since $2 \cdot 39=78$
$11 \times(1)$
(2) - (3)
a true congruence; since $7 \cdot 39=273$
$(4)+(5)$.

This completes our discussion of Example 4.

A Systematic Method

The proof of Theorem 3.3.5 provides a systematic method, using the Euclidean Algorithm, for deriving a solution for x in the linear congruence equation

$$
\begin{equation*}
a x \equiv b(\bmod n) \tag{3.14}
\end{equation*}
$$

Let $d=(a, n)$ and suppose that $d \mid b$. Let $b=d e$ for some integer e. Using the Euclidean Algorithm find integers r and s satisfying $r a+s n=d$. Now we perform the following derivation:

$$
\begin{align*}
a x & \equiv b(\bmod n) & & \text { the given congruence equation } \tag{1}\\
n x & \equiv 0(\bmod n) & & \text { a true congruence } \tag{2}\\
r a x & \equiv r b(\bmod n) & & r \times(1) \tag{3}\\
s n x & \equiv 0(\bmod n) & & s \times(2) \tag{4}\\
(r a+s n) x & \equiv b r(\bmod n) & & (3)+(4) \tag{5}\\
d x & \equiv \operatorname{der}(\bmod n) & & \text { because } d=r a+s n \text { and } b=d e \tag{6}\\
x & \equiv e r\left(\bmod \frac{n}{d}\right) & & \text { by Theorem } 3.2 .7 \text { if } d>1 \tag{7}
\end{align*}
$$

Let $x_{0}=e r$. Theorem 3.3.5 states that the solution to (3.14) is unique $\left(\bmod \frac{n}{d}\right)$. It now follows that an integer x is a solution to (3.14) if and only if $x \equiv x_{0}\left(\bmod \frac{n}{d}\right)$.

Exercises 3.3

Do problems \#1-6 on page 76 of text.
Exercise Notes. For Problems 1-6 you must solve these congruence equations by means of derivations as those given in these notes (see Example 4 above, for examples).

