Translational Initiation

Lecture Outline

- 1. Process of Initiation
- 2. Alternative mechanisms of Initiation
- 3. Key Experiments on Initiation
- 4. Regulation of Initiation

Translation is a process with three phases

- 1. Translational Initiation delivery of ribosome and first tRNA to the start codon of the mRNA.
- 2. Translation Elongation formation of peptide bonds to generate a growing polypeptide as the ribosome moves along the mRNA using tRNA's to decode the open reading frame.
- 3. Translation Termination release of the newly synthesized polypeptide and disassociation of the ribosome mRNA complex.

Cellular Components required for Translation Initiation

- mRNA
- Ribosome
 - 40S subunit
 - 60S subunit
- tRNA_i
- 11 eIF's (eukaryotic initiation factors)
 - Transient protein factors that are required for initiation but are not part of the translation machinery during elongation or termination

Translational Initiation – delivery of ribosome and first tRNA to the start codon of the mRNA.

- Assembly of ternary complex with initiator tRNA (tRNA_i)
- 2. Disassociation of 80S Ribosome
- 3. Assembly of 43S complex association of ternary complex with small subunit of ribosome (40S)
- 4. Assembly of eIF4 CAP complex
- 5. Assembly of 48S complex by binding of 43S complex to CAP structure of mRNA
- 6. Scanning to Start Codon
- 7. Association of the large ribosomal subunit (60S)

Kozak Rule								
about 5% of the time the second codon was used in most mKNA. However about 5% of the time the second codon was used. Question what determined which start codon was used. First she examined sequences around functional start codons to see if their surrounding nucleotides might influenced usage.								
Nucleotide	-4	-3	-2	Position c	on mRNA 1	2	3	4
A 20)	80	30	25	100	0	0	25
G 10)	13	10	15	0	0	100	60
C 60)	5	35	60	0	0	0	2
U 10)	2	25	10	0	100	0	10
Consensus C		Α	x	С	Α	U	G	G/a
		Kozak Nucleic Acid Research 1981						

