Translation Elongation

- 1. Post Initiation Ribosome
- 2. Three Interlocking Cycles of Elongation
- 3. Role of eEF1 α
 - Decoding/Proofreading/Delivery
- 4. Movement of tRNA through Ribosome
 - Hybrid site model
- 5. Role of eEF2
 - Molecular Mimicry
 - Binding and GTP Hydrolysis
- 6. Role of E site

Post Initiation Ribosome P site (tRNAi) A site (Empty) Four steps to Elongation Decoding Delivery of tRNA to A site Transpeptidase Activity Translocation

Proof reading

- Proofreading steps
 - · Decoding
 - Trigger GTP Hydrolysis
 - Delivery
 - Second conformational check
- Error rate
 - 0.01% / amino acid added
 - Probability of producing error free protein

P = (1 – Error Rate) Number of amino acids
For average protein (300 amino acids) P = 97%

Effect of Errors

- · Alter one amino acid
 - compare to mis-sense mutation
- Most positions relatively insensitive to errors (Estimate 1 in 400 substitutions lethal to protein function)
- Conservative errors maybe favored
- Inverse relationship between speed of protein production and accuracy
- Streptomycin interferes with proofreading.

Transpeptidase Activity

Molecular Mimicry

Role of E-site in proofreading

- Allosteric communication with A-site
 - Occupied E site reduces affinity of the A-Site for Ternary complex. This low affinity may be necessary for proof-reading.
 - Antibiotics (edeine) and tRNA alterations which prematurely empty A site increase misincorporation.
 - Delivery of tRNA to A site results in emptying of E site.
 - Fungi have a separate EF (eEF3) required to clear E site.

Role of E site in Frame Maintenance.

- Frame shifting is a severe ribosomal error.
- Binding of tRNA in E site limits frame shifting.
- Mechanism Increase # H bonds?
- Loss of tRNA from E site increases frameshifts.