Statistics Review

- PSY 450W \qquad
- Dr. Schuetze

Two central ways of using numbers.

Descriptive Statistics:

- Simple quantitative description or summary. \qquad
- Batting average in baseball
- Grade-point average \qquad
Inferential Statistics:
- Conduct analyses on samples
- Compare groups (experimental v. control...)
- Use statistical operations to generalize the results to a population.
\qquad
\qquad
\qquad
\qquad

Describing data

We characterize the general trend or character of data using two key statistics:

1. Central tendency or general "drift" of the scores.

- Mode $\quad \rightarrow$ most common score
- Median \rightarrow middle of the distribution
- Mean \rightarrow average score \qquad

2. Variance: how diverse the scores are (how much vary from each other).

- Range \rightarrow...from the highest to lowest score
- Standard \rightarrow "average" amount the scores vary deviation
from the Mean score
\qquad
\qquad
\qquad

Mode

- Most frequent score in the distribution
- Example: scores $=16,20,21,20,36,15,25,15,12$

- Score	Frequency	$\%$ of cases
- 12	1	11
- 15	3	33
- 20	2	22
- 21	1	11
- 25	1	11
- 36	1	11

- 15 is most common = mode

Mode

ㅁ Characteristics

- Used for all numerical scales, particularly nominal.
- Insensitive to extreme values or range of scores.
- Unstable: sensitive to small shifts in number of cases.

Median

- Mid-point of a distribution of scores
- List scores in numerical order
- $12,15,15,15,20,20,21,25,36$
- Locate the score in the center of the sample
- $12,15,15,15,20,20,21,25,36$
- The middle $\left(5^{\text {th }}\right.$ out of 9$)$ score $=20$.

Median

- Characteristics:
- Sensitive to the range of scores
- More stable than the mode
- Not sensitive to extreme scores (e.g., changing highest score (36) to 100 would not change the median.

Mean (M)

- The "average" score in a sample \qquad
Most common measure of central tendent
- Total all scores: $12+15+20+21+20+36+15+25+15=179$ \qquad
- Divide by " n " of scores: 179 / $9=19.9$

Mean

- Characteristics:

- Good for Ratio or interval scales
- sensitive to all observed values
- highly stable; with larger n is insensitive to subtle changes in values
- Can be highly sensitive to extreme values (particularly in smaller samples).

Measures of Central Tendency

- For a normal distribution the mean mode, and median are all same -- the center of the distribution
- Most variables in nature (and science) are normally distributed

Age is a good exampre or a variable that is normally distributed

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cennal rendency:Skewed

 BistributionsA skewed distribution has extreme scores in one \qquad direction.

\qquad
\qquad
\qquad
(Adding in some very high scores raises the
average...).
Common examples

- Behaviors such as alcohol or drug use:
- Most people use none or moderate
- A diminishing number use higher levels

Demographic variables such as income

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measures of Variability

- Variability: amount of fluctuation in data.

ㅁ $20,30,40,50,60,70,80$

■ $47,48,49,50,51,52,53$

Measures of Variability

- Range: Difference between highest and lowest \qquad scores.
- Variance: deviation from the mean of the scores. How much scores are spead out or dispersed around mean.
- Standard Deviation: Squared root of variance.

Variance: Standard Deviation

Estimates of Variance:

2. The Standard deviation (S) of scores \qquad around the Mean

- Similar to the "average" amount that each score deviates from the M of the sample.
- "Standardizes" scores to a normal curve, allowing basic statistics to be used.
- More accurate \& detailed than range:
- A few extremely high or low scores ("outliers") may make the range inaccurate
- S assesses the deviation of all scores in the sample from the mean
\qquad
\qquad
\qquad
\qquad
\qquad

Scales of Measurement

- Nominal Scale: observations are labeled and categorized (qualitative).
- Ordinal Scale: observations are ranked in terms of size / magnitude they are in relation to each other (qualitative).
- Interval Scale: equal differences (intervals) between numbers on the scale reflect equal differences in magnitude (quantitative).
- Ratio Scale: ratios of numbers do reflect ratios of magnitude (quantitative).

Normal Distribution

- Characteristics
- Symmetrical \qquad
- Three measures of central tendency are same value
- Most scores fall close to mean \qquad
- Parametric Statistics: inferential stats used to analyze normally distributed interval/ratio scores.
- Nonparametric Statistics: inferential statistics used to analyze interval/ ratio scores not normally distributed.

Testing Hypotheses

- Statistical Hypothesis: restatement of research
hypothesis into two different hypotheses.
- Alternative Hypothesis: statistical term for research hypothesis $\left(\mathrm{H}_{\mathrm{o}}\right)$.
- Null Hypothesis: Predicted relationship does not exist in the population $\left(\mathrm{H}_{1}\right)$.

Statistical Hypothesis Testing

Null Hypothesis. All scores differ from the M

by chance alone.

- Statistical Question (alternate hypothesis):

Does this score differ from the M by $>$ chance?

- Using the Normal Distribution

More extreme scores have a lower probability of occurring by chance alone
The \# of standard deviation units (' Z ' score) $=$ the $\%$ of cases above or below the observed score (its "extremity")

"Statistical significance"

Statistical significance

\checkmark By convention, we assume that a score with less than 5\% probability of occurring [i.e., higher or lower than 95% of the other scores... $p<.05$] has not occurred by chance alone. \qquad
$p<.05$ corresponds to $Z=1.98 ; Z$ tells us if we can consider the effect (the distance from the M) to be "Statistically Significant."
if $Z>1.98$ we consider the score to be "significantly" different from the mean

Statistical significance \& areas under the normal curve
$\mathbf{9 5 \%}$ of scores are between $Z=-1.98$ and $Z=+1.98$.

One-tailed vs. Two-tailed

- Nondirectional hypothesis \rightarrow two-tailed test
- Directional hypothesis \rightarrow one-tailed test

Errors in Hypothesis Testing

- Type I Error: the null hypothesis has been mistakenly rejected when it is actually true. \qquad
- Type II Error: the null hypothesis has been mistakenly accepted when it is actually false.

Chi Square

- Nonparametric test: determines whether the frequencies of responses in our sample represent frequencies expected in the population.
- Contingency table
- Compares obtained frequencies with expected frequencies

	Chi Square		
	Complied	Refused	Row Totals
Group	$\begin{aligned} & 6 \\ & (15.5) \\ & \{7.5\} \end{aligned}$	$\begin{aligned} & 74 \\ & (64.5) \\ & \{9.3\} \end{aligned}$	80
Alone	$\begin{aligned} & 25 \\ & (15.5) \\ & \{31.3\} \end{aligned}$	$\begin{aligned} & 55 \\ & (64.5) \\ & \{68.75\} \end{aligned}$	80
Column Totals	31	129	160

