

Nutrition and fungal lifestyles

- All fungi are heterotrophic, digest food by releasing *exoenzymes* into their environment.
- Decomposers (saprobes)
- Parasites and pathogens
- Mutualists (symbionts)

Structure of the fungal body

- The *mycelium* is a network of branching *hyphae* (singular, *hypha*)
- In some fungi, the mycelium can become organized into a complex reproductive structure (e.g., a mushroom or basidiocarp)
- Depending on the fungal group, hyphae can be *septate* or *coenocytic*

Fungal life cycles: what's new? Sporophyte/gametophyte concepts not applicable to fungal life cycles. One nucleus per cell? Not necessarily. Some new terms: Plasmogamy: fusion of cytoplasm of two parents. Heterokaryotic mycelium: contains nuclei from two parents. Dikaryotic mycelium: ditto, but each cell contain two nuclei. Karyogamy: fusion of nuclei of two parents.

Origin and evolution of of the fungi

- Common ancestor of animals and fungi lived ca. 1.5 BYA
- · Fungal ancestor was
 - Unicellular
 - Aquatic
 - Produced flagellated cells
- Fungi moved to land with plants, many as symbionts with plants.

Fungal lineages

- · Chytrids
- Zygomycetes
- Glomeromycetes
- Ascomycetes
- Basidiomycetes
- "Deuteromycetes" or imperfect fungi

Chytrids

- Unicellular or developing simple mycelia
- Aquatic
- Produce flagellated spores (this is a "primitive" trait
- Saprobes and parasites

Fungal lineages

- Chytrids
- Zygomycetes
- Glomeromycetes
- Ascomycetes
- Basidiomycetes
- "Deuteromycetes" or imperfect fungi

Zygomycetes

- Many fast growing "molds"
- A few parasites and symbionts
- Hyphae are coenocytic
- Reproduce sexually (occasionally) and asexually (mostly)

Rhizopus zygosporangia are heterokaryotic

- They form as a result of *plasmogamy* between mycelia of different mating types.
- They contain many nuclei from each parent.
- During zygosporangial development karyogamy produces diploid nuclei.
- Meiosis of the diploid nuclei produces haploid spores which disperse to establish new mycelia.

Fungal lineages

- Chytrids
- Zygomycetes
- Glomeromycetes
- Ascomycetes
- Basidiomycetes
- "Deuteromycetes" or imperfect fungi

Glomerocytes and the mycorrhizal relationship

- Mycorrhiza = fungus-root
- Mycorrhizal symbiosis involves a partnership between fungi and roots of host plant
- Fungal mycelium penetrates host roots.
- Plant "donates" carbohydrate to fungus, fungus "donates" mineral nutrients (especially phosphorous) to host plant.
- > 90% of all plant species have mycorrhizae
- Not all mycorrhizal fungal are Glomeromycytes, but all Glomeromycytes are mycorrhizal

Fungal lineages

- · Chytrids
- Zygomycetes
- Glomeromycetes
- Ascomycetes
- · Basidiomycetes
- "Deuteromycetes" or imperfect fungi

Ascomycetes

- This is a large group: > 32,000 species
- Wide range of life histories and morphologies:
 - From single-celled yeasts to complex "cup fungi"
 - Saprobes
 - Pathogens
 - Symbioses with algae to form lichens
 - Mycorrhizal
- · Hyphae are septate

Fungal lineages

- Chytrids
- Zygomycetes
- Glomeromycetes
- Ascomycetes
- Basidiomycetes
- "Deuteromycetes" or imperfect fungi

Basidiomycetes

- This is a large group: > 30,000 species
- Wide range of life histories and morphologies
 - Mushrooms and shelf fungi
 - Very effective saprobes, good at degrading lignin.
 - Some species are mycorrhizal.
 - Some species are serious crop pathogens
 - Some species are lichen forming

Basidiomycetes mostly reproduce sexually

- Plasmogamy between mycelia of opposite mating types forms a *dikaryotic* mycelium.
- Some of the hyphae become organized into an *basidiocarp*.
- Within the basidiocarp certain hyphal tips develop into *basidia* (singular, *basidium*).
- Karyogamy occurs in the basidia.
- Meiosis produces spores (basidiospores) in the basidia.

Basidiospores and basidia on a gill of a basidiocarp

Some important features of fungal morphology and life cycles

- The fungal body is a mycelium composed of filamentous hyphae.
- Hyphae can be septate or coenocytic.
- No alternation of multicellular generations, as in plants and some algae.
- Plasmogamy and karyogamy are separate events.
- Life cycles have haploid, diploid and heterokaryotic phases.
- The only diploid nuclei are the "zygotes" resulting from karyogamy.
- In fungi with septate hyphae, the heterokaryotic phase is dikaryotic (2 nuclei/cell)

Some ecological roles of fungi (1)

- Major decomposers (saprobes)
- Symbionts
 - Mycorrhizae
 - Fungal-animal symbiosis (e.g. the fungus gardens of leaf cutting ants, next slide)

Leaf cutting ants: harvest leaves, feed them to fungi, consume the fungi

Figure 31.22

