Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

Qin Shen,1 Susan K. Goderie,1 Li Jin,1 Nithin Karanth,1 Yu Sun,1 Natalia Abramova,1 Peter Vincent,2 Kevin Pumiglia,3 Sally Temple1 *

Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

Stem cell expansion and differentiation are regulated in vivo by environmental factors encountered in the stem cell niche (1).

1Center for Neuropharmacology and Neuroscience, 2Center for Cardiovascular Sciences, 3Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA.

*To whom correspondence should be addressed. E-mail: TempleS@mail.amc.edu

Fig. 1. Endothelial cell–derived soluble factors stimulate cortical stem cell expansion and delay differentiation. (A) The coculture system. (B to G) Results from E10-11 cortical stem cells. (B) CD31 stains endothelial cells in the transwells (top), but no CD31+ cells are detected below in the cortical cell compartment (bottom). Scale bar, 25 μm. (C) Cortical stem cells generate larger, cohesive clones of flattened progeny with stronger junctional β-catenin staining in endothelial (bottom) compared to cortical (top) coculture. Scale bar, 50 μm. (D) Neural stem cell clones grown for 7 days with endothelial (Endo) cells were sheet-like and had more Nestin+ and LeX+ and fewer β-tubulin-III+ progeny than control clones. Scale bar, 100 μm. (E) Histogram of clone size (defined by number of progeny) frequency at day 7 in culture. (F) Mean clone size with different feeder layers at 7 days in culture [analysis of variance (ANOVA)]. * indicates P < 0.01 by post-hoc tests. (G) Percentages of cells with progenitor and neuronal markers per stem cell clone (*, P < 0.05, t test).

In the adult, neural stem cells lie close to blood vessels: in the hippocampus (2), the subventricular zone (SVZ) (3), and the songbird higher vocal center (4). In the developing central nervous system (CNS), ventricular zone cells produce vascular endothelial growth factor, which attracts vessel growth toward them (5). Thus, vascular cells are close to CNS germinal zones throughout life (fig. S1), and it has been suggested that they form a niche for neural stem cells (2).

To examine a possible functional interaction, we cocultured neural and vascular cells (Fig. 1A). Neural stem cells from mouse cerebral cortex from embryonic day 10 to 11 (E10-11) were plated at clonal density on the base of culture wells. The upper transwell compartment was seeded with purified vascular-associated or other feeder cells: primary bovine pulmonary artery endothelial (BPAE) cells, a mouse brain endothelial (MbEND) cell line, vascular smooth muscle (VSM) cells, NIH3T3 fibroblasts, or as a control, high-density age-matched cortical cells (CTX). CD31+ (platelet endothelial cell adhesion molecule c-1, PECAM-1) endothelial cells were never found in the lower compartment when BPAE or MbEND cells were plated in the transwell upper compartment (Fig. 1B), confirming that the feeder cells could not migrate through the 0.4-μm-diameter membrane pores.

As expected (6), embryonic stem cell clones cocultured with CTX began producing neurons within a day. Most neuron production was over by 7 days, and growth after this time was largely in glial lineages. Clones cocultured with BPAE or MbEND cells behaved differently (Fig. 1D and fig. S2), growing into sheets of largely flat-
Enhancement of neuron production is not at the expense of glial cell production. (A) Neurosphere-expanded E10 cells that were sub-cultured as neurospheres for 7 days then differentiated in adherent culture for 4 days produced only 7% neurons. Many more stem cell clones growing in BPAE cocultures contained a high percentage of neurons, up to 64%, compared to clones grown in CTX coculture (Fig. 2, D and E), and neuron production was prolonged (supporting online text and fig. S3). Increased neurogenesis from endothelial cocultured neural stem cells did not occur at the expense of gliogenesis: The percentage of glial fibrillary acidic protein (GFAP⁺) astrocytes generated was similar, and although oligodendrocyte differentiation (indicated by staining with the early oligodendrocyte marker O4) was reduced in BPAE cocultures compared to CTX cocultures, the difference could not account for the enhancement of neuron generation (Fig. 2, C and E). NIH3T3 cells enhanced oligodendrocyte generation. Coculture with VSM or NIH3T3 cells reduced neurogenesis compared to CTX (Fig. 2E), showing that the endothelial effect is cell-type specific.

Endothelial cells stimulate proliferation and neurogenesis of neural stem cells from a variety of embryonic CNS regions (7) and from different stages. E15.5 cortical and adult SVZ stem cells grown in endothelial coculture generated sheets of LeX⁺, Nestin⁺ cells. After differentiation, E15.5 endothelial-expanded cortical cells and adult SVZ cells produced more neurons compared to control cells (Fig. 2, F and H).

Neurosphere-expanded stem cells responded to endothelial factors. E15.5 cortical cells grown as neurospheres in fibroblast growth factor 2 (FGF2) for 7 days were plated in adherent conditions and cocultured for 3 days with endothelial cells or with age-matched cortical cells, then differentiated by withdrawal of feeder cells for 4 days. Stem cells exposed to endothelial factors produced more neurons than control cortical stem cells (Fig. 2G).

In vivo, most projection neurons are born in the early embryonic period, whereas glia and interneurons arise later; adult stem cells are primed to generate interneurons (8, 9). To examine the neuron subtypes generated from E10-11 cortical stem cells expanded in endothelial coculture, differentiated clones were stained for glutamic acid decarboxylase (GAD67), a GABAergic marker typically expressed in interneurons, or Tbr1, an early pyramidal neuron marker that preferentially labels projection neurons, compared to CTX- or NIH3T3-cocultured clones. To examine the neuron subtypes generated from E10-11 cortical stem cells expanded in endothelial coculture, differentiated clones were stained for glutamic acid decarboxylase (GAD67), a GABAergic marker typically expressed in interneurons, or Tbr1, an early pyramidal neuron marker that preferentially labels projection neurons (10) (Fig. 3A). More stem cell clones growing in BPAE coculture made Tbr1⁺ projection neurons, compared to CTX-cocultured clones (Fig. 3B). BPAE-cocultured stem cells generated more Tbr1⁺ neurons than neurosphere-expanded E10 cells that were subsequently differentiated in adherent culture (9.95% versus 2.41%). Thus, endothelial cell coculture supports development of both projection neurons and interneurons.
Fig. 3. Endothelial-expanded E10 stem cell clones retain the ability to generate Tbr1+ projection neurons as well as GAD+ interneurons. (A) GAD (cytoplasmic, red), Tbr1 (nuclear marker, red) and β-tubulin-III (green) staining. (B) Histograms showing the frequency of GAD+ and Tbr1+ neurons in stem cell clones.

That projection neurons typical of the early embryo arise in E10–11 cocultures after many cell divisions suggests that endothelial factors promote stem cell self-renewal and inhibit the normal progression in which older stem cells preferentially produce glia or interneurons. We found few Tbr1+ neurons produced from E15.5 stem cells and none from adult SVZ cells, indicating that endothelial factors are permissive, not instructive, for this fate: They cannot reverse the restriction.

Supporting the hypothesis that endothelial factors promote stem cell self-renewal, time-lapse video recording of dividing clones reveals that stem cells grown with endothelial cells underwent symmetric, proliferative divisions generating Nestin+ progeny, in contrast to the asymmetric division patterns seen in control conditions (6, 11) (Fig. 4A).

effect in replacement therapies.

References and Notes
15. S. Hitoshi et al., Genes Dev. 16, 846 (2002).
19. We thank H. Singer for VSM cells, Y.-P. Hsueh for Tbr1 antibody, and C. Fasano, Y. Wang, C. Butler, and K. Kirchhofer for help in manuscript preparation. Supported by the National Institute of Neurological Disorders and Stroke and the New York State spinal cord research program.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1095505/DC1
Materials and Methods
SOM Text
Figs. S1 to S7
References and Notes
9 January 2004; accepted 19 March 2004
Published online 1 April 2004
10.1126/science.1095505
Include this information when citing this paper.