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Chapter 0

Preliminaries

Linear Algebra is an important branch of mathematics which has many applications in engineering,
economics, and social science. In addition, Linear Algebra is usually a students first introduction
to mathematical abstraction and mathematical proof.

0.1 Proofs

How to Read a Proof

While a proof may look like a short story, it is often more challenging to read than a short story.
Usually some of the computations will not seem clear, and you will have to figure out how they were
done. Some of the arguments will not be immediately understandable and will require some think-
ing. Many of the steps will seem completely strange and may appear very mysterious. Basically,
before you can understand a proof you must unravel it. First, identify the main ideas and steps of
the proof. Then see how they fit together to allow one to conclude that the result is correct. One
important word of advice while reading a proof. Try to remember what it is that has to be proved.
Before reading the proof decide what it is exactly that must be proven. Always ask yourself, “What
would I have to show in order to prove that?”

How to Write a Proof

Practice! We learn to write proofs by writing proofs. Start by just copying, nearly word for word,
a proof in the text that you find interesting. Vary the wording by using your own phrases. Write
out the proof using more steps and more details than you found in the original proof. Try to find
a different proof of the same statement and write out your new proof. Try to change the order of
the argument, if it is possible. If it is not possible, you will soon see why. All mathematicians first
learned how to write proofs by going through this process of imitation.

Conjecture + Proof = Theorem

A conjecture is a statement that you think is plausible but whose truth has not been established.
In mathematics one never accepts a conjecture as true until a mathematical proof of the conjecture
has been given. Once a mathematical proof of the conjecture is produced we then call the conjecture
a theorem. On the other hand, to show that a conjecture is false one must find a particular
assignment of values (an example) making the statement of the conjecture false. Such an assignment
is called a counterexample to the conjecture.

4
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The Proof Is Completed

It is convenient to have a mark which signals the end of a proof. Mathematicians in the past,
would end their proofs with letters Q.E.D., an abbreviation for the Latin expression “quod erat
demonstrandum.” So in English, we interpret Q.E.D. to mean “that which was to be demonstrated.”
In current times, mathematicians typically use the symbol to let the reader know that the proof
has been completed. In these notes we shall do the same.

Important Sets in Mathematics

Certain sets are frequently used in mathematics. The most commonly used ones are the sets of
whole numbers, natural numbers, integers, rational and real numbers. These sets will be denoted
by the following symbols:

1. N = {1, 2, 3, . . . } is the set of natural numbers.

2. Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } is the set of integers.

3. Q is the set of rational numbers; that is, the set of numbers r = a
b for integers a, b where

b 6= 0. So, 3
2 ∈ Q.

4. R is the set of real numbers and so, π ∈ R.

For sets A and B we write A ⊆ B to mean that the set A is a subset of the set B, that is, every
element of A is also an element of B. For example, N ⊆ Z.

Example 1. Consider the set of integers Z. We evaluate the following truth sets:

1. {x ∈ Z : x is a prime number} = {2, 3, 5, 7, 11, . . . }.
2. {x ∈ Z : x is divisible by 3} = {. . . ,−12,−9,−6,−3, 0, 3, 6, 9, 12, . . . }.
3. {z ∈ Z : z2 ≤ 1} = {−1, 0, 1}.
4. {x ∈ Z : x2 ≤ 1} = {−1, 0, 1}.

Interval Notation

In mathematics, an interval is a set consisting of all the real numbers that lie between two given
real numbers a and b, where a < b. The numbers a and b are referred to as the endpoints of the
interval. Furthermore, an interval may or may not include its endpoints.

1. The open interval (a, b) is defined to be (a, b) = {x ∈ R : a < x < b}.
2. The closed interval [a, b] is defined to be [a, b] = {x ∈ R : a ≤ x ≤ b}.
3. The left-closed interval [a, b) is defined to be [a, b) = {x ∈ R : a ≤ x < b}.
4. The right-closed interval [a, b) is defined to be (a, b] = {x ∈ R : a < x ≤ b}.

Finally, for any real number a we now define the following rays, or half-lines.

1. The interval (a,∞) is defined to be (a,∞) = {x ∈ R : a < x}.
2. The interval [a,∞) is defined to be [a,∞) = {x ∈ R : a ≤ x}.
3. The interval (−∞, a) is defined to be (−∞, a) = {x ∈ R : x < a}.
4. The interval (−∞, a] is defined to be (−∞, a] = {x ∈ R : x ≤ a}.
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The symbol ∞ denotes ‘infinity’ and is not a number. The notation ∞ it is just a useful symbol
that allows us to represent intervals that are ‘without an end.’ Similarly, the notation −∞ is used
to denote an interval ‘without a beginning.’

Problem 2. Using interval notation, evaluate the following truth sets:

(1) {x ∈ R : x2 − 1 < 3}.
(2) {x ∈ R+ : (x− 1)2 > 1}.
(3) {x ∈ R− : x > 1

x}.

Solution.

(1) We first solve the inequality x2 − 1 < 3 for x2 obtaining x2 < 4. The solution to this latter
inequality is −2 < x < 2. Thus, {x ∈ R : x2 − 1 < 3} = (−2, 2).

(2) We are looking for all the positive real numbers x that satisfy the inequality (x−1)2 > 1. We
see that the solution consists of all real numbers x > 2. So, {x ∈ R+ : (x−1)2 > 1} = (2,∞).

(3) We need to find all the negative real numbers x that satisfy x > 1
x . We conclude x2 < 1. So,

we must have −1 < x < 0. So, {x ∈ R− : x > 1
x} = (−1, 0).

Definition. A positive rational number m
n is in reduced form if m ∈ N and n ∈ N have no

common factors.

Example. 4
3 is in reduced form, 12

9 is not in reduced form because 12 and 9 have a common factor.
Clearly every rational number can be put into reduced form.

How to Prove an Equation

Equations play a critical role in modern mathematics. In this text we will establish many theorems
that will require us to know how to correctly prove an equation. Because this knowledge is so
important and fundamental, our first proof strategy presents two correct methods that we shall use
when proving equations.

Proof Strategy 1. To prove a new equation ϕ = ψ there are two approaches:

(a) Start with one side of the equation and derive the other side.

(b) Perform operations on the given equations to derive the new equation.

We now apply strategy 1(a) to prove a well known algebraic identity.

Theorem. Let a and b be arbitrary real numbers. Then (a+ b)(a− b) = a2 − b2.

Proof. We1 will start with the left hand side (a+b)(a−b) and derive the right hand side as follows:

(a+ b)(a− b) = a(a− b) + b(a− b) by the distribution property

= a2 − ab+ ba− b2 by the distribution property

= a2 − b2 by algebra.

Thus, we have that (a+ b)(a− b) = a2 − b2.
1Most mathematicians use the term “we” in their proofs. This is considered polite and is intended to include the

reader in the discussion.
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We now apply strategy 1(b) to prove a new equation from some given equations.

Theorem. Let m,n, i, j be integers. Suppose that m = 2i+ 5 and n = 3j. Then mn = 6ij + 15j.

Proof. We are given that m = 2i+ 1 and n = 2j. By multiplying corresponding sides of these two
equation, we obtain mn = (2i+ 5)(3j). Thus, by algebra, we conclude that mn = 6ij + 15j.

Remark 0.1.1. To prove that an equation ϕ = ψ is true, it is not a correct method of proof to
assume the equation ϕ = ψ and then work on both sides of this equation to obtain an identity.

The method described in Remark 0.1.1 is a fallacious one and if applied, can produce false
equations. For example, this fallacious method can be used to derive the equation −1 = 1. To
illustrate this, let us assume the equation −1 = 1. Now square both sides, obtaining (−1)2 = 12

which results in the true equation 1 = 1. The method cited in Remark 0.1.1 would allow us to
conclude that −1 = 1 is a true equation. This is complete nonsense. We never want to apply
a method that can produce false equations!

Exercises 0.1

1. Let x and y be real numbers. Prove that (x− y)(x2 + xy + y2) = x3 − y3.
2. Let x and y be real numbers. Prove that (x+ y)(x2 − xy + y2) = x3 + y3.

3. Let x and y be real numbers. Prove that (x+ y)2 = x2 + 2xy + y2.

4. Let x and y be real numbers. Using exercise 3, prove that (x+ y)3 = x3 + 3x2y + 3xy2 + y3.

5. Let ϕ be the positive real number satisfying the equation ϕ2−ϕ− 1 = 0. Prove that ϕ = 1
ϕ−1 .

6. Let ϕ be the positive real number satisfying the equation ϕ2 − ϕ − 1 = 0. Let a 6= b be real
numbers satisfying b

a = ϕ. Prove that a
b−a = ϕ.

0.2 Sets

In modern mathematics, many of the most important ideas are expressed in term of sets. A set is
just a collection of objects. These objects are referred to as the elements of the set. These elements
can be numbers, ordinary objects, words, other sets, functions, etc. An object a may or may not
belong to a given set A. If a belongs to the set A then we say that a is an element of A, and we
write a ∈ A. Otherwise, a is not an element of A and we write a /∈ A. A finite set has the form
A = {x1, x2, . . . , xn} where n is a natural number and the listed elements of A are all distinct.

Basic Definitions of Set Theory

Definition 0.2.1. The following set notation is used throughout mathematics.

1. For sets A and B we write A = B to mean that both sets have exactly the same elements.

2. For sets A and B we write A ⊆ B to assert that the set A is a subset of the set B, that is,
every element of A is also an element of B.

3. We shall say that the set A is a proper subset of the set B when A ⊆ B and A 6= B.

4. We write ∅ for the empty the set, that is, the set with no members.

5. If A is a finite set, then |A| represents the number of elements in A.
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Venn diagrams are geometric shapes that are used to depict sets and their relationships. In
Figure 1 we present a Venn diagram which illustrates the subset relation, a very important concept
in set theory and mathematics.

A B

Figure 1: Venn diagram of A ⊆ B

Set Operations

The language of set theory is used in the definitions of nearly all of mathematics. There are three
important and fundamental operations on sets that we shall now discuss: the intersection, the
union and the difference of two sets. We illustrate these four set operations in Figure 2 using Venn
diagrams. Shading is used to focus one’s attention on the result of each set operation.

BA
1. Venn diagram of A ∪B

BA
2. Venn diagram of A ∩B

BA
3. Venn diagram of A \B

Ac A

U
4. Venn diagram of Ac

Figure 2: Set Operations

Definition 0.2.2. Given sets A and B we can build new sets using the set operations:

1. A ∪B = {x : x ∈ A or x ∈ B} is the union of A and B.

2. A ∩B = {x : x ∈ A and x ∈ B} is the intersection of A and B.

3. A \ B = {x : x ∈ A and x /∈ B} is the set difference of A and B (also stated in English as
A “minus” B).

4. Given a universe of objects U and A ⊆ U , the set Ac = U \A = {x ∈ U : x /∈ A} is called the
complement of A.

Example 1. Let A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8, 10, 12}. Then

• A ∪B = {1, 2, 3, 4, 5, 6, 8, 10, 12}.
• A ∩B = {2, 4, 6}.
• A \B = {1, 3, 5}.
• B \A = {8, 10, 12}.
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Problem 2. Recalling the notation (see page 5) for intervals on the real line, evaluate the result
of the following set operations:

1. (−3, 2) ∩ (1, 3).

2. (−3, 4) ∪ (0,∞).

3. (−3, 2) \ [1, 3).

Solution. While reading the solution to each of these items, it may be helpful to sketch the relevant
intervals on the real line.

1. Since x ∈ (−3, 2) ∩ (1, 3) if and only if x ∈ (−3, 2) and x ∈ (1, 3), we see that x is in this
intersection precisely when x satisfies both (a) −3 < x < 2 and (b) 1 < x < 3. We see that
the only values for x that satisfies both (a) and (b) are those such that 1 < x < 2. Thus,
(−3, 2) ∩ (1, 3) = (1, 2).

2. Since x ∈ (−3, 4)∪(0,∞) if and only if x ∈ (−3, 4) or x ∈ (0,∞), we see that x is in this union
precisely when x satisfies either (a) −3 < x < 4 or (b) 0 < x. We see that the only values for
x that satisfies either (a) or (b) are those such that −3 < x. Thus, (−3, 4)∪(0,∞) = (−3,∞).

3. Since x ∈ (−3, 2) \ [1, 3) if and only if x ∈ (−3, 2) and x /∈ [1, 3), we see that x is in this set
difference precisely when x satisfies (a) −3 < x < 2 and (b) not (1 ≤ x < 3). We see that
the only values for x that satisfies both (a) and (b) are those such that −3 < x < 1. Thus,
(−3, 2) \ [1, 3) = (−3, 1).

Exercises 0.2

1. Recalling our discussion on interval notation on page 5, evaluate the following set operations:

(a) (−2, 0) ∩ (−∞, 2).

(b) (−2, 4) ∪ (−∞, 2).

(c) (−∞, 0] \ (−∞, 2].

(d) R \ (2,∞).

(e) (R \ (−∞, 2]) ∪ (1,∞).

0.3 Functions

Definition 0.3.1. We write f : A→ B to mean that f is a function from the set A to the set B,
that is, for every element x ∈ A there is exactly one element f(x) in B. The value f(x) is called “f
of x,” or “the image of x under f .” The set A is called the domain of the function f and the set
B is called the co-domain of the function f . In addition, we shall say that x ∈ A is an input for
the function f and that f(x) is the resulting output . We will also say that x gets mapped to f(x).

Remark 0.3.2. If f : A→ B then every x ∈ A is assigned exactly one element f(x) in B. We say
that f is single-valued. Thus, for every x ∈ A and z ∈ A, if x = z then f(x) = f(z).

Definition 0.3.3. Given a function f : A→ B the range of f , denoted by R(f), is the set

R(f) = {f(a) : a ∈ A} = {b ∈ B : b = f(a) for some a ∈ A}.
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The range of a function is the set of all “output” values produced by the function.

Question. Let h : X → Y be a function. What does it mean to say that b ∈ R(h)? Answer:
b ∈ R(h) means that b = f(x) for some x ∈ A.

Example 1. Let f : R → R be the function in Figure 3 defined by the formula f(x) = x2 − x.
Then R(f) = {f(x) : x ∈ R} = {x2 − x : x ∈ R} = [−1

4 ,∞).

−1
4

y = f(x)

Figure 3: Graph of f(x) = x2 − x

One-To-One Functions and Onto Functions

Definition. A function f : X → Y is said to be one-to-one (or an injection), if distinct elements
in X get mapped to distinct elements in Y ; that is,

for all a, b ∈ X, if a 6= b then f(a) 6= f(b),

or equivalently,
for all a, b ∈ X, if f(a) = f(b) then a = b.

Definition. A function f : X → Y is said to be onto (or a surjection), if for each y ∈ Y there is
an x ∈ X such that f(x) = y.

Definition. A function f : X → Y is said to be one-to-one and onto (or a bijection), if f is
both one-to-one and onto.

Inverse Functions

In calculus you study the inverse trigonometric functions, and you also learn that the two functions
ln(x) and ex are inverses of each other. The inverse of a function is another function that “reverses
the action” of the original function. Not every function has an inverse. The only functions that do
have an inverse are those that are one-to-one and onto.

Theorem 0.3.4. Suppose that f : A → B is one-to-one and onto. Then there is a function
f−1 : B → A that satisfies

f−1(b) = a iff f(a) = b (1)

for all b ∈ B and a ∈ A.

Proof. Suppose f : A → B is one-to-one and onto. We shall prove that f−1, as defined by (1), is
a function from B to A. To do this, we shall show that f−1 is single-valued. Let b ∈ B. Since
f : A→ B is onto, there is an a ∈ A such that f(a) = b. Suppose that a′ ∈ A also satisfies f(a′) = b.
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Thus, f(a) = f(a′). Because f is one-to-one, it follows that a = a′. Therefore, for every b ∈ B
there is exactly one a ∈ A such that f(a) = b. Hence, the formula f(a) = b used in (1) defines a
function f−1 : B → A.

Definition 0.3.5. Suppose f : A → B is one-to-one and onto. Then the function f−1 : B → A,
defined by (1), is called the inverse function of f .

1

2

3

4

5

a

b

c

d

e

f : A → B

A B

a

b

c

d

e

1

2

3

4

5

f−1 : B → A

B A

Figure 4: A function f : A→ B and its inverse f−1 : B → A

An arrow diagram of a one-to-one and onto function f : A → B is given in the Figure 4. The
arrow diagram for the inverse function f−1 : B → A is also portrayed in Figure 4. Observe that
the inverse function f−1 reverses the action of f and that f(x) = y if and only if f−1(y) = x, for
each x ∈ A and y ∈ B.

Composition of Functions

If the domain of a function equals the co-domain of another function, then we can use these two
functions to construct a new function called the composite function. The composite function is
defined by taking the output of one these functions and using that as the input for the other
function. The formal mathematical definition appears below.

Definition 0.3.6. For functions g : A → B and f : B → C, one forms the composite function
(f ◦ g) : A→ C by defining (f ◦ g)(x) = f(g(x)) for all x ∈ A.

For example, let g : A→ B and f : B → C be the functions in Figure 5. An arrow diagram for
the composite function (f ◦ g) : A→ C appears in Figure 6.

1

2

3

4

5

6

7

8

g : A → B f : B →C

A B
C

a

b

c

d

e

Figure 5: Two functions f and g where the domain of f equals the co-domain of g

5

6
7

8

A
C

( f ◦g) : A→Ca
b
c
d
e

Figure 6: The resulting composite function f ◦ g for the functions in Figure 5
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Example 2. Let g : R → R and f : R → R be the functions defined by f(x) = 1
x2+2

and g(x) =
2x− 1. Find formulas for (f ◦ g)(x) and (g ◦ f)(x). Is f ◦ g = g ◦ f?

Solution. Let x ∈ R. We evaluate the function (f ◦ g)(x) as follows:

(f ◦ g)(x) = f(g(x)) = f(2x− 1) =
1

(2x− 1)2 + 2
.

Thus, (f ◦ g)(x) = 1
(2x−1)2+2

. We evaluate (g ◦ f)(x) to obtain

(g ◦ f)(x) = g(f(x)) = g

(
1

x2 + 2

)
= 2

(
1

x2 + 2

)
− 1 =

2

x2 + 2
− 1.

Hence, (g ◦f)(x) = 2
x2+2

−1. Since (f ◦g)(0) = 1
3 and (g ◦f)(0) = 0, we conclude that f ◦g 6= g ◦f .

One cannot form the composition of just any two functions. When in doubt here is a simple
rule to follow: The composition f ◦ g is defined when the domain of the left function f is equal to
the co-domain of the right function g.

Remark 0.3.7. Given two functions g : A → E and f : B → C, if R(g) ⊆ B, then one can also
define the composition (f ◦ g) : A → C. In other words, if f(b) is defined for every value b of the
function g, then one can define f ◦ g.

Composing a Function with the Identity Function

The identity function just takes an input x and returns x as its output value. As a result, when
one composes a function f with the identity function, the result will just be the function f .

Theorem 0.3.8. Let f be any function f : A→ B. Let iA : A→ A be the identity function on A
and let iB : B → B be the identity function on B. Then

(1) (f ◦ iA) = f ,

(2) (iB ◦ f) = f .

Proof. Clearly, (f ◦iA)(x) = f(iA(x)) = f(x) and (iB◦f)(x) = iB(f(x)) = f(x), for each x ∈ A.

Composing a Function with its Inverse

Since the inverse of a function “reverses the action” of the original function, the result of composing
these two functions leads to “no action.”

Theorem 0.3.9. Suppose f : A→ B is one-to-one and onto. Let f−1 : B → A be the inverse of f .
Then

(1) f−1(f(a)) = a for all a ∈ A,

(2) f(f−1(b)) = b for all b ∈ B.

Proof. First we prove (1). Let a ∈ A. Since f(a) ∈ B, let b ∈ B be such that f(a) = b.
Theorem 0.3.4 implies (∗) f−1(b) = a. After substituting b = f(a) into equation (∗), we see that
f−1(f(a)) = a. To prove (2), let b ∈ B. Since f−1(b) ∈ A, let a ∈ A be such that f−1(b) = a.
Thus, (†) f(a) = b by Theorem 0.3.4. Upon substituting a = f−1(b) into equation (†), we obtain
f(f−1(b)) = b.
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Corollary 0.3.10. Suppose f : A→ B is one-to-one and onto. Let f−1 : B → A be the inverse of
f . Then

(1) (f−1 ◦ f) = iA

(2) (f ◦ f−1) = iB

where iA is the identity function on A and iB is the identity function on B.

Proof. Since iA(a) = a for a ∈ A and iB(b) = b for b ∈ B, items (1) and (2) follow from the
corresponding items in Theorem 0.3.9.

Composing One-To-One Functions

Our next theorem shows that the composition of two one-to-one functions is also one-to-one.

Theorem 0.3.11. If g : A→ B and f : B → C are one-to-one, then (f ◦ g) : A→ C is one-to-one.

Proof. Assume g : A→ B and f : B → C are one-to-one. To prove that the function (f ◦g) : A→ C
is one-to-one, let x ∈ A and y ∈ A. Assume (f ◦ g)(x) = (f ◦ g)(y). Thus, (i) f(g(x)) = f(g(y))
by the definition of composition. Since f is one-to-one, we conclude from (i) that g(x) = g(y).
Because g is one-to-one, we see that x = y. This completes the proof.

Composing Onto Functions

The next theorem asserts that the composition of two onto functions yields an onto function.

Theorem 0.3.12. If g : A→ B and f : B → C are onto, then (f ◦ g) : A→ C is onto.

Proof. Assume g : A→ B and f : B → C are onto. We shall prove that the function (f ◦g) : A→ C
is onto. Let z ∈ C. Since f : B → C is onto and z ∈ C, there is a y ∈ B such that f(y) = z.
Because y ∈ B and g : A → B is onto, there is an x ∈ A such that g(x) = y. We will show that
(f ◦ g)(x) = z as follows:

(f ◦ g)(x) = f(g(x)) by definition of composition

= f(y) because g(x) = y

= z because f(y) = z.

Thus, (f ◦ g)(x) = z. Therefore, (g ◦ f) : X → Z is onto.



Chapter 1

Matrices and Linear Systems

1.1 Introduction to Matrices and Linear Systems

A system of m linear equations in the n unknowns x1, . . . , xn has the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.1)

...
...

am1x1 + am2x2 + · · · + amnxn = bm

is called a (m× n) system of linear equations, where the aij and bi are fixed constants.

Example 1. Consider the following (3× 4) linear system:

23x − 22y + 2w + 4z = 26

3x + 2y − w + z = 4 (1.2)

−10x − 5y + 4w − 7z = −6.

One can check that x = 2, y = 1, w = 3, z = −1 is a solution to this system. Thus, we will say that
(2, 1, 3,−1) is a solution to the system (1.2).

Definition 1.1.1. We say that the list of numbers (x1, . . . , xn) is a solution to the system (1.1) if
it satisfies all the equations in the system. The set

S = {(x1, . . . , xn) : (x1, . . . , xn) is a solution to the system (1.1)}

is called the solution set of the system (1.1). The system (1.1) is consistent if it has a solution,
that is, S 6= ∅. If the system (1.1) has no solutions then it is inconsistent.

Question. How to find the solution set S to the system (1.1)?

Answer. Transform the complicated system (1.1), using elementary operations (algebra), to an
equivalent system which is easier to solve.

14
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1.1.1 Elementary Operations on a Linear System of Equations

Definition 1.1.2. The Elementary Operations that can be applied to a system of equations
are the following:

(1) Multiply an equation by an non-zero number.

(2) Interchange two equations.

(3) Add a multiple of one equation to another equation.

Theorem 1.1.3. If one linear system of systems of equations is obtained from another linear
system of equations by applying elementary operations, then both linear systems have exactly the
same solutions.

Problem 2. Solve the system

x + 2y = 8

3x − 4y = 4.

Solution. To be solved in class.

Problem 3. Solve the system

3x + 2y + z = 2

4x + 2y + 2z = 8

x − y + z = 4.

Solution. To be solved in class.

1.1.2 Matrices

Definition 1.1.4. An m× n matrix is a rectangular array of numbers of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


and the number aij is called the ij th entry of the matrix A. We shall sometimes write A = [aij ]m×n
as shorthand. Also, we shall sometimes write Am×n when we want to emphasize the “size” of the
matrix A. For notational convenience we shall write

ai =
[
ai1 ai2 · · · ain

]
for the ith row of the matrix A; and we shall write

Aj =


a1j
a2j
...

amj


for the jth column of the matrix A.
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For example, the 4× 5 matrix

A4×5 =


1 2 3 4 5
−2 0 20 π −4
−3 −1 3 6 9
−4 4 5 −4 8


has a12 = 2, and a43 = 5. The 2nd row of A is

a2 =
[
−2 0 20 π −4

]
and the 3rd column of A is

A3 =


3

20
3
5

 .

1.1.3 Matrix Representation of a Linear System

In this section we will show how a system of equations can be expressed as a matrix. Matrices are
helpful in rewriting a linear system in a very simple form. The algebraic properties of matrices may
then be used to solve systems.

Given a system of m linear equations in the n unknowns x1, . . . , xn

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.3)

...
...

am1x1 + am2x2 + · · · + amnxn = bm

we form the two matrices

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 b =


b1
b2
...
bm

 .
The matrix A is called the coefficient matrix and the m× (n+ 1) matrix

[A |b] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
...

am1 am2 · · · amn bm


is called the augmented matrix. The augmented matrix provides a more compact notation for a
linear system of equations.
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Example 4. Given the system of equations

x1 + x2 + 2x3 = 9

2x1 + 9x2 − 10x3 = 39 (1.4)

x1 − 6x2 + x3 = −27.

the coefficient matrix is given by

A =

 1 1 2
2 9 −10
1 −6 1


and the matrix b is given by b =

 9
39
−27

. Thus, the augmented matrix of the linear system (1.4)

is given by

[A |b] =

 1 1 2 9
2 9 −10 39
1 −6 1 −27

 .
1.1.4 Elementary Row Operations on a Matrix

We will now show how to use the augmented matrix to solve a system of equations.

Definition 1.1.5. The Elementary Row Operations which can be applied to a matrix are:

(1) Multiply a row by an non-zero number

(2) Interchange two rows

(3) Add a multiple of one row to another.

Notation for Row Operations. Given a matrix A we shall let Ri represent the i-th row of A.
Thus we can represent the above row operations as follows:

(1) Replace the i-th row by an non-zero multiple k of the i-th row: kRi → Ri

(2) Interchange the i-th and j-th rows: Ri ↔ Rj .

(3) Replace the j-th row with a multiple of the i-th row added to the j-th row: kRi + Rj → Rj ,
where i 6= j.

Definition 1.1.6. If a matrix B can be obtained from a matrix A by performing a finite sequence
of row operations on A, then the matrices A and B are said to be row equivalent.

Theorem 1.1.7. Let [A |b] and [C |d] be the augmented matrices of two linear systems of equations
each of m equations and n unknowns. If the matrices [A |b] and [C |d] are row equivalent, then
both linear systems have exactly the same solutions.

Problem 5. Find the solution set of the system of equations

x1 + x2 + 2x3 = 9

2x1 + 9x2 − 10x3 = 39 (1.5)

x1 − 6x2 + x3 = −27.
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Solution. We form the augmented matrix

[A |b] =

 1 1 2 9
2 9 −10 39
1 −6 1 −27

 .
Now, using row operations, we transform the matrix [A |b] into the “reduced echelon” form [C |d]
as follows:

[A |b] =

 1 1 2 9
2 9 −10 39
1 −6 1 −27


−2R1 +R2 → R2 1 1 2 9

0 7 −14 21
1 −6 1 −27


−R1 +R3 → R3 1 1 2 9

0 7 −14 21
0 −7 −1 −36


R2 +R3 → R3 1 1 2 9

0 7 −14 21
0 0 −15 −15


1

7
R2 → R2 1 1 2 9

0 1 −2 3
0 0 −15 −15


− 1

15
R3 → R3 1 1 2 9

0 1 −2 3
0 0 1 1


−R2 +R1 → R1 1 0 4 6

0 1 −2 3
0 0 1 1


2R3 +R2 → R2 1 0 4 6

0 1 0 5
0 0 1 1


−4R3 +R1 → R1

[C |d] =

 1 0 0 2
0 1 0 5
0 0 1 1





1.2. REDUCED ECHELON FORM AND GAUSS-JORDON ELIMINATION 19

The matrix [C |d] is in “reduced echelon form”. We will now express this new augmented matrix
[C |d] as a linear system of equations and solve this new system of equations to obtain:

x1 = 2

x2 = 5

x3 = 1

This new system has the same solution set as (1.5) by Theorem 1.1.7 and thus, the solution set is
S = {(2, 5, 1)}.

Exercises 1.1

Pages 12 to 13 of text – #1, 3, 7, 9, 11, 13, 19, 21, 25, 27, 31, 35.

1.2 Reduced Echelon Form and Gauss-Jordon Elimination

Many of the problems we will solve in Linear Algebra require that a matrix be converted into
reduced echelon form. Any matrix can be transformed to a matrix in reduced echelon form using
elementary row operations, by a method known as Gauss-Jordan elimination. The solutions of a
system of linear equations can be immediately obtained from the reduced echelon form to which
the augmented matrix has been transformed.

Definition 1.2.1. A matrix is in echelon form if

(a) All rows consisting of zeros, if any, are on the bottom of the matrix.

(b) The first non-zero entry in each row is a 1, called the leading one of the row.

(c) If two rows contain leading ones, the higher row will have its leading one to the left of the
leading one of the lower row.

Definition 1.2.2. A matrix is in reduced echelon form1

(a) All rows consisting of zeros, if any, are on the bottom of the matrix.

(b) The first non-zero entry in each row is a 1, called the leading one of the row.

(c) If two rows contain leading ones, the higher row will have its leading one to the left of the
leading one of the lower row.

(d) A column containing a leading one has all other entries in the column equal to 0.

A matrix in reduced echelon form will have the general form
1 ∗ ∗ 0 ∗ 0 ∗ 0 ∗ ∗ ∗
0 0 0 1 ∗ 0 ∗ 0 ∗ ∗ ∗
0 0 0 0 0 1 ∗ 0 ∗ ∗ ∗
0 0 0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 0 0 0 0 0


where ∗ represents any real number.

1Some texts call this reduced row echelon form.
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Example 1. Two matrices that are in reduced echelon form appear below:

M =


1 2 0 0 5 −1
0 0 1 0 3 0
0 0 0 1 2 4
0 0 0 0 0 0

 N =


1 2 3 0 5 0
0 0 0 1 3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


Theorem 1.2.3. Every matrix B is row equivalent to a matrix C in reduced echelon form.

We will illustrate the proof of Theorem 1.2.3 in our next example.

Example 2. Using elementary row operations we shall transform the matrix

B =

 1 2 3 4
0 1 2 3
−1 1 0 −1

 .
into a matrix C in reduced echelon form as follows:

B =

 1 2 3 4
0 1 2 3
−1 1 0 −1


R1 +R3 → R3 1 2 3 4

0 1 2 3
0 3 3 3


−2R2 +R1 → R1 1 0 −1 −2

0 1 2 3
0 3 3 3


−3R2 +R3 → R3 1 0 −1 −2

0 1 2 3
0 0 −3 −6


−1

3
R3 → R3 1 0 −1 −2

0 1 2 3
0 0 1 2


−2R3 +R2 → R2 1 0 −1 −2

0 1 0 −1
0 0 1 2


R3 +R1 → R1

C =

 1 0 0 0
0 1 0 −1
0 0 1 2


The matrix C is in reduced echelon form. This completes the example.
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1.2.1 Solving a Linear System by Reduction to Echelon Form

A system of m linear equations in the n unknowns x1, . . . , xn has the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.6)

...
...

am1x1 + am2x2 + · · · + amnxn = bm

where the aij and bi are constants.

Definition 1.2.4. We say that the list of numbers (x1, . . . , xn) is a solution to the system (1.6) if
it satisfies all the equations in the system. The set

S = {(x1, . . . , xn) : (x1, . . . , xn) is a solution to the system (1.6)}
is called the solution set of the system (1.6). The system (1.6) is consistent if it has a solution,
that is, S 6= ∅. If the system (1.6) has no solutions then it is inconsistent.

Question. How to find the solution set S to the system (1.6)?

Answer. Since the algorithm we use to solve the system (1.6) makes no use of the variables
(x1, . . . , xn), we consider the augmented m× (n+ 1) matrix

[A |b] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm


and perform Row Operations on [A |b] to transforms this matrix to a new matrix [C |d] which is in
reduced echelon form, obtaining the augmented matrix [C |d]. The system of equations associated
to the augmented matrix [C |d] is easy to solve and has exactly the same solutions as the original
system (1.6).

1.2.2 Gauss-Jordon Elimination

We now give a procedure for solving a system of equations, by transforming the augmented matrix
into another augmented matrix. The system represented by the new augmented matrix is easier to
solve and has the same solution set as the original system of linear equations.

Gauss-Jordan Elimination Prodedure. To solve a linear system of equations:

Step 1. Form the augmented matrix [A |b] of the system.

Step 2. Transform the augmented matrix [A |b] into reduced echelon form [C |d].

Step 3. Solve the new system of equations having the augmented matrix [C |d].

Problem 3. Find the solution set of the system of equations

x1 + 2x2 + 3x3 = 4

x2 + 2x3 = 3 (1.7)

−x1 + x2 = −1.
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Solution. We will (1) form the augmented matrix [A |b] of the system (1.7), (2) transform the
augmented matrix into reduced echelon form [C |d], and (3) solve the new system of equations
having the augmented matrix [C |d]. The solution of the system with augmented matrix [C |d]
will also be the solution of the system (1.7).

We apply Step 1 of the Gauss-Jordon elimination method. The augmented matrix for the
system (1.7) is as follows:

[A |b] =

 1 2 3 4
0 1 2 3
−1 1 0 −1

 .
We now apply Step 2 and transform this augmented matrix into the reduced echelon form [C |d].
This was done in Example 2 above. Thus,

[C |d] =

 1 0 0 0
0 1 0 −1
0 0 1 2

 .
Apply Step 3 and solve the the new system of equations with augmented matrix [C |d]. This new
system has the same solution set as (1.7):

x1 = 0

x2 = −1

x3 = 2.

and thus the solution set is S = {(0,−1, 2)}. Thus, the linear system (1.7) has only one solution.

In the following problem, we shall again use the Gauss-Jordon Elimination to solve a system of
linear equations. This linear system will have an infinite number of solutions.

Problem 4. Find the solution set of the system of equations

x3 + 2x4 − x5 = 4

x4 − x5 = 3 (1.8)

x3 + 3x4 − 2x5 = 7

2x1 + 4x2 + x3 + 7x4 = 7

by Gauss-Jordan elimination.

Solution. We will (1) form the augmented matrix [A |b] of the system (1.8), (2) transform the
augmented matrix into reduced echelon form [C |d], and (3) solve the new system of equations
having the augmented matrix [C |d]. The solution of the system with augmented matrix [C |d]
will also be the solution of the system (1.8).

We now apply Step 1 of the Gauss-Jordon elimination method. We construct the the augmented
matrix

[A |b] =


0 0 1 2 −1 4
0 0 0 1 −1 3
0 0 1 3 −2 7
2 4 1 7 0 7

 .
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We now perform the following the row operations on the augmented matrix:

[A |b] =


0 0 1 2 −1 4
0 0 0 1 −1 3
0 0 1 3 −2 7
2 4 1 7 0 7


(R1 ↔ R4)& (R2 ↔ R3)

2 4 1 7 0 7
0 0 1 3 −2 7
0 0 0 1 −1 3
0 0 1 2 −1 4


−R2 +R4 → R4

2 4 1 7 0 7
0 0 1 3 −2 7
0 0 0 1 −1 3
0 0 0 −1 1 −3


R3 +R4 → R4

2 4 1 7 0 7
0 0 1 3 −2 7
0 0 0 1 −1 3
0 0 0 0 0 0


−R2 +R1 → R1

2 4 0 4 2 0
0 0 1 3 −2 7
0 0 0 1 −1 3
0 0 0 0 0 0


1

2
R1 → R1

1 2 0 2 1 0
0 0 1 3 −2 7
0 0 0 1 −1 3
0 0 0 0 0 0


(−3R3 +R2 → R2)& (−2R3 +R1 → R1)

[C |d] =


1 2 0 0 3 −6
0 0 1 0 1 −2
0 0 0 1 −1 3
0 0 0 0 0 0


The matrix [C |d] is in reduced echelon form, and from [C |d] we get the following new system of
equations which has the same solution set as (1.8):

x1 + 2x2 + + 3x5 = −6

x3 + x5 = −2

x4 − x5 = 3.

In the above system of equations, the variables x1, x3, x4 are called the leading variables or the
dependent variables. On the other hand, the variables x2 and x5 are called the free variables or the
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independent variables. Now, solving for the leading variables x1, x3, x4 we obtain

x1 = −2x2 − 3x5 − 6

x3 = −x5 − 2

x4 = x5 + 3.

Since x2 and x5 are free variables, we will replace them with r and s, respectively, to obtain the
solution

x1 = −2r − 3s− 6

x2 = r

x3 = −s− 2

x4 = s+ 3

x5 = s

where r and s are arbitrary, and hence, the solution set is

S = {(−2r − 3s− 6, r,−s− 2, s+ 3, s) : r and s are arbitrary real numbers}.
Therefore, there are an infinite number of solutions to the system (1.8).

Remark 1.2.5. When a consistent system has free variables in its “reduced echelon form system,”
then the original system always has an infinite number of solutions.

1.2.3 How to Recognize an Inconsistent System?

Suppose we have the linear system of equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.9)

...
...

am1x1 + am2x2 + · · · + amnxn = bm

and we want to determine if the system has a solution. We form the augmented matrix

[A |b] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm


and perform row operations on [A |b] to transform this matrix to a new matrix [C |d] in reduced
echelon form. If [C |d] has the form, say

[C |d] =



c11 c12 · · · c1n 0
c21 c22 · · · c2n 0
...

...
...

...
0 0 · · · 0 1
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0


,
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then the system (1.9) has no solutions. Why? Because this last non-zero row represents the
equation

0x1 + 0x2 + · · ·+ 0xn = 1.

Since this equation has no solutions, the original system (1.9) is inconsistent, that is, the system
(1.9) has no solutions.

Exercises 1.2

Pages 26 to 27 of text – #11, 13, 15, 17, 19, 23, 25, 27, 29, 37, 39.

1.3 Consistent Systems of Linear Equations

Theorem 1.3.1. Let [A |b] be the augmented matrix for the consistent system in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.10)

...
...

am1x1 + am2x2 + · · · + amnxn = bm.

Let [C |d] be the reduced echelon form of [A |b]. Suppose that [C |d] has r many leading ones.
Then r ≤ n and there are n− r free variables in the final solution to (1.10). In addition,

1. If r = n, then the solution to (1.10) is unique.

2. If r < n, then there are an infinite number of solutions to (1.10).

Proof. (Review Problem 4 on page 22.) We consider the augmented matrix

[A |b] =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm


and perform row operations on [A |b] to transform this matrix to the new matrix [C |d] in reduced
echelon form. Since the system (#) is consistent, the reduced echelon matrix [C |d] must be of the
form (with all non-zero rows on top)

[C |d] =



1 c12 c13 · · · c1n d1
0 c22 c23 · · · c2n d2
0 0 c33 · · · c3n d3
0 0 0 · · · c4n d4
...

...
...

...
...

0 0 0 · · · crn dr
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0


.
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Let r be the number of leading ones in the matrix [C |d]. Recall that n is the number of variables
in the system (#) and that n is also the number of columns in the matrix C. Each non-zero row in
[C |d] has exactly one leading 1. Since the system is consistent, we see that no leading 1 can occur
in d. So all of the leading 1’s must occur in some (or all) of the columns in C. Therefore, r ≤ n.

In addition, if r = n, then there is a unique solution, because there would be no free variables.
Also, if r < n, then there are n− r > 0 many free variables and hence, there are an infinite number
of solutions (we may choose any values we want for the free variables and then get the required
values for the leading variables and thus, we can get an infinite number of solutions to the system).
This completes the proof.

Corollary 1.3.2. Let [A |b] be the augmented matrix for the system in n unknowns and m
equations:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.11)

...
...

am1x1 + am2x2 + · · · + amnxn = bm.

If m < n, then either the system (1.11) is inconsistent or it has an infinite number of solutions.

Proof. Assume that m < n. If the system is inconsistent, then we are done. So, suppose that the
system is consistent. Clearly, the number of rows in the reduced echelon form [C |d] is equal to m
(since the matrix [A |b] has m rows). Hence, one can see that the number r of non-zero rows in
the matrix [C |d] must satisfy r ≤ m. Now since since m < n, it follows that r < n. Theorem 1.3.1
implies (see item 2 above) that the system must have an infinite number of solutions.

1.3.1 Homogeneous Linear Systems of Equations

Definition 1.3.3. A system of linear equations is said to be homogeneous if all the bi’s are 0, that
is, the system has the following form:

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

a31x1 + a32x2 + · · · + a3nxn = 0 (1.12)

...
...

am1x1 + am2x2 + · · · + amnxn = 0.

Remark 1.3.4. The homogeneous system (1.12) is always consistent because it has the trivial
solution x1 = 0, x2 = 0, . . . , xn = 0. We are interested in homogeneous systems which have
non-trivial solutions.

The next Theorem 1.3.5 gives a condition which, when satisfied, will guarantee that a homo-
geneous system has an infinite number of solutions. This theorem follows immediately from the
above Corollary 1.3.2; however, we shall present a proof of Theorem 1.3.5 that “illustrates” the
proof of Corollary 1.3.2.

Theorem 1.3.5. If the homogeneous system (1.12) of linear equations has more unknowns than
equations (that is, if m < n), then the system has infinitely many solutions.
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Proof. Since the argument is easy to generalize, we shall consider only the special case when m = 3
and n = 5. So, let [A |θ] be the augmented matrix

[A |θ] =

 a11 a12 a13 a14 a15 0
a21 a22 a23 a24 a25 0
a31 a32 a33 a34 a35 0

 .
After performing row operations on [A |θ], we can transform this matrix to a new matrix [C |θ] in
reduced echelon form. [Note: the column of zeros θ is preserved under elementary row
operations.] Now, because there are only three rows in the matrix [A |θ], there can be at most
three leading 1’s in the matrix [C |θ]. (This implies that at least two of the five unknowns can be
chosen arbitrarily.) Without loss of generality we can assume that [C |θ] has the form

[C |θ] =

 1 c12 0 0 c15 0
0 0 1 0 c25 0
0 0 0 1 c35 0


Since x1, x3, x4 are leading variables, x2 and x5 are free variables. We will replace x2 and x5 with
r and s, respectively, to obtain the system solution by solving for the leading variables x1, x3, x4
(see the previous examples):

x1 = −c12r − c15s
x2 = r

x3 = −c25s
x4 = −c35s
x5 = s

where r and s are arbitrary, and hence, there are an infinite number of solutions to the system.
This completes the proof of the theorem.

Exercises 1.3

Pages 37 to 38 of text – #1, 2, 3, 4, 21, 22, 23, 24.

1.5 Matrix Operations

Definition 1.5.1. An m× n matrix is a rectangular array of numbers of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


and the number aij is called the ij th entry of the matrix A. We shall sometimes write A = [aij ]m×n
as shorthand. Also, we shall sometimes write Am×n when we want to emphasize the “size” of the
matrix A. For notational convenience we shall write

ai =
[
ai1 ai2 · · · ain

]
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for the ith row of the matrix A; and we shall write

Aj =


a1j
a2j
...

amj


for the jth column of the matrix A.

For example, the 4× 5 matrix

A4×5 =


1 2 3 4 5
−2 0 20 π −4
−3 −1 3 6 9
−4 4 5 −4 8


has a12 = 2, and a43 = 5. The 2nd row of A is

a2 =
[
−2 0 20 π −4

]
and the 3rd column of A is

A3 =


3

20
3
5

 .
Definition 1.5.2. Two matrices, say A = [aij ]m×n and B = [bij ]m×n, are equal if and only if they
have the same size and entries, that is, aij = bij for all i, j.

1.5.1 Matrix Addition and Scalar Multiplication

Definition 1.5.3. Given A = [aij ]m×n and B = [bij ]m×n, we define A + B = [cij ]m×n where
cij = aij + bij .

Example 1.  1 −1 2 3
0 1 0 −40
2 0 3 1

 +

 1 0 −1 3
1 0 1 41
4 0 −1 9

 =

 2 −1 1 6
1 1 1 1
6 0 2 10


Definition 1.5.4. Given A = [aij ]m×n and a scalar (real number) d, define scalar multiplication
by dA = [daij ]m×n.

Example 2.

2

 1 −1 2 3
0 1 0 −40
2 0 3 1

 =

 2 −2 4 6
0 2 0 −80
4 0 6 2


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1.5.2 Vectors in Rn

Definition 1.5.5. Rn is the space (set) of all n-vectors x =


x1
x2
...
xn

 where each component xi

is a real number and is called the i-th coordinate.

Definition 1.5.6 (Vector Addition). The addition of vectors x =


x1
x2
...
xn

 and y =


y1
y2
...
yn

 in Rn

is defined by x + y =


x1 + y1
x2 + y2

...
xn + yn

 .

Definition 1.5.7 (Scalar Multiplication). The scalar multiplication of a vector x =


x1
x2
...
xn

 by

a scalar c is defined by cx =


cx1
cx2

...
cxn

 .
Problem 3 (Combining vector addition and scalar multiplication). Consider the two vectors in
R4 given by

x =


1
2
3
4

 and y =


−2
−3

1
2

 .
Evaluate the “linear combination” x1x + x2y, where x1, x2 are scalars in R.

Solution.

x1x + x2y = x1


1
2
3
4

+ x2


−2
−3

1
2

 =


1x1
2x1
3x1
4x1

+


−2x2
−3x2
1x2
2x2

 =


1x1 − 2x2
2x1 − 3x2
3x1 + x2
4x1 + 2x2

 .
Problem 4 (Going Backwards). Suppose that you are given the vector

z =


2x1

−3x1 + x2
−x2

x1 − 4x2


in R4, where x1, x2 are scalars in R. Find vectors x and y in R4 so that z = x1x + x2y.
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Solution.

z =


2x1

−3x1 + x2
−x2

x1 − 4x2

 = x1


2
−3

0
1

+ x2


0
1
−1
−4

 .
1.5.3 Vector Forms of General Solutions of Linear Systems

Having defined vectors, vector addition and vector scalar multiplication, we now derive the vector
form of the generalized solution of a linear system as follows:

Problem 5. Find the vector form of the generalized solution of the system of equations

x3 + 2x4 − x5 = 4

x4 − x5 = 3 (1.13)

x3 + 3x4 − 2x5 = 7

2x1 + 4x2 + x3 + 7x4 = 7

Solution. Using Gauss-Jordan elimination on the augmented matrix

[A |b] =


0 0 1 2 −1 4
0 0 0 1 −1 3
0 0 1 3 −2 7
2 4 1 7 0 7


we obtain (see Problem 4 on page 22) the reduced echelon form matrix

[C |d] =


1 2 0 0 3 −6
0 0 1 0 1 −2
0 0 0 1 −1 3
0 0 0 0 0 0


From [C |d] we get the following new system of equations which has the same solution set as (1.13):

x1 + 2x2 + + 3x5 = −6

x3 + x5 = −2

x4 − x5 = 3.

Note that the independent variables are x2 and x5, and the dependent variables are x1, x3, x4. Now,
solving for the leading variables x1, x3, x4 we obtain

x1 = −2x2 − 3x5 − 6

x3 = −x5 − 2

x4 = x5 + 3.

Since x2 and x5 are free variables, we get the solution

x1 = −2x2 − 3x5 − 6

x2 = x2

x3 = −x5 − 2

x4 = x5 + 3

x5 = x5.
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Putting this into vector notation, we obtain

x =


x1
x2
x3
x4
x5

 =


−2x2 − 3x5 − 6

x2
−x5 − 2
x5 + 3
x5

 .

Thus the the vector form of the generalized solution of the system (1.13) is given by

x =


x1
x2
x3
x4
x5

 = x2


−2

1
0
0
0

+ x5


−3

0
−1

1
1

+


−6

0
−2

3
0


where x2 and x5 are arbitrary real numbers.

1.5.4 Matrix Multiplication

Definition 1.5.8. Given A = [aij ]m×p and B = [bij ]p×n, we define AB = [aij ]m×p [bij ]p×n =
[cij ]m×n where

cij = ai1b1j + ai2b2j + · · ·+ aipbpj

and so,

AB =



a11 a12 · · · a1p
a21 a22 · · · a2p

...

ai1 ai2 · · · aip
...

am1 am2 · · · amp




b11 b12 · · · b1j · · · b1n
b21 b22 · · · b2j · · · b2n

...
...

...
...

bp1 bm2 · · · bpj · · · bpn

 =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

... cij
...

cm1 cm2 · · · cmn



Example 6.  2 −2 1 3
0 2 0 −8
4 0 3 2




5 1 2
3 −1 −3
2 0 1
0 0 0

 =

 6 4 11
6 −2 −6

26 4 11


Remark 1.5.9. AB = Am×pBp×n is defined if and only if the “inside dimensions” agree.

Remark 1.5.10. Even when AB and BA are both defined, it does not follow that AB = BA.
Thus, matrix multiplication does not satisfy the commutative law.

Remark 1.5.11. AB = AC does not necessarily imply thatB = C. Thus, matrix multiplication
does not satisfy the cancellation law.
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1.5.5 Using Matrix Equations to Represent Linear Systems

Using matrix multiplication, a set of m linear equations in the n unknowns x1, . . . , xn

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3 (1.14)

...
...

am1x1 + am2x2 + · · · + amnxn = bm

can be written as 
a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn



x1
x2
...
xn

 =


b1
b2
...
bm


or more simply as

Ax = b

where A = [aij ] is the coefficient matrix of the system (#), x =


x1
x2
...
xn

 and b =


b1
b2
...
bm

.

Example 7. Given the system of equations

x1 + x2 + 2x3 = 9

2x1 + 9x2 − 10x3 = 39 (1.15)

x1 − 6x2 + x3 = −27.

the coefficient matrix is given by

A =

 1 1 2
2 9 −10
1 −6 1



and the column vector b is given by b =

 9
39
−27

. The column vector of the unknowns is

x =

 x1
x2
x3

. Thus, the linear system (1.15) can be written in matrix notation as Ax = b.

Problem 8. Let A and b be as in the above Example 7. Solve the matrix equation Ax = b for x.

Solution. Form the matrix [A |b] and put it into reduced echelon form. You will get the solution

x =

 2
5
1

 (see Problem 5 on page 17).
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1.5.6 Other Ways to View Matrix Multiplication

Theorem 1.5.12. Let A be the p×m matrix

A =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

... · · · ...
am1 am2 · · · amp

 =
[

A1 A2 · · · Ap

]

where Aj ∈ Rm denotes the jth column of A. Given a p× 1 column vector x =


x1
x2
...
xp

 the matrix

product Ax is a m× 1 column vector. In addition, Ax can be written as a “linear combination” of
the columns of A as follows:

Ax =


a11 a12 · · · a1p
a21 a22 · · · a2p
...

... · · · ...
am1 am2 · · · amp



x1
x2
...
xp

 = x1A1 + x2A2 + · · ·+ xpAp.

Theorem 1.5.13. Let A be an m× p matrix and let B be the p× n matrix

B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

... · · · ...
bp1 bp2 · · · bpn

 =
[

B1 B2 · · · Bn

]

where Bj ∈ Rp denotes the jth column of B. The product ABj is an m× 1 column vector and, in
addition, the matrix product AB can be expressed in another way:

AB =
[
AB1 AB2 · · · ABn

]
.

Exercises 1.5

Pages 58 to 60 of text – #1, 7, 9, 11, 13, 15, 31, 33, 43, 45, 47, 61, 65(b).

1.6 Algebraic Properties of Matrix Operations

Definition 1.6.1. We shall write O = Om×n =


0 0 · · · 0
0 0 · · · 0
...

... · · · ...
0 0 · · · 0

 for the m× n zero matrix.

Definition 1.6.2. When A is a n× n matrix of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


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we say that A is a square matrix and we call the entries a11, a22, . . . , ann the main diagonal.
The n× n identity matrix is defined to be

I = In =


1 0 · · · 0
0 1 · · · 0
...

... · · · ...
0 0 · · · 1


where 1’s are on the diagonal, for the n× n identity matrix.

Theorem 1.6.3 (Matrix Addition). The follow algebraic properties hold for matrix addition:

1. A+B = B +A (addition commutes)

2. A+ (B + C) = (A+B) + C (addition is associative)

3. A+O = O +A = A, where O has the same size as A (additive identity)

4. A−A = O (additive inverse)

Theorem 1.6.4 (Matrix Multiplication). The follow algebraic properties hold for matrix multipli-
cation:

1. A(BC) = (AB)C (multiplication is associative)

2. A(B + C) = AB +AC (distribution property)

3. (A+B)C = AC +BC (distribution property)

4. AI = IA = A, where A is a square matrix (multiplicative identity)

(e) AO = OA = O
Theorem 1.6.5 (Scalar Multiplication). If r and s are scalars and A and B are matrices, then

1. r(sA) = (rs)A

2. (r + s)A = rA+ sA

3. r(A+B) = rA+ rB

4. A(rB) = r(AB) = (rA)B.

1.6.1 The Transpose of a Matrix

Given the m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn


we define the transpose of A, to be the n×m matrix

AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

... · · · ...
a1n a2n · · · amn


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The first row of A becomes the first column of AT , the second row of A becomes the second column
of AT , and so forth. Thus, the last row of A becomes the last column of AT

Example 1. Here is a matrix and its transpose:

A =

 1 2 3 4
5 6 7 8
9 10 11 12

 AT =


1 5 9
2 6 10
3 7 11
4 8 12


Theorem 1.6.6 (Transpose Properties). If A and B are matrices, then

1. (A+B)T = AT +BT

2. (AB)T = BTAT

3. (AT )T = A

Example 2. Here is an example of item 2 in Theorem 1.6.6.Let

A =

[
1 3 2
2 −1 3

]
and B =

 0 1
2 2
3 −1

 .
Then

(AB)T =

[ 1 3 2
2 −1 3

] 0 1
2 2
3 −1

T

=

[
12 7
5 −3

]
and

BTAT =

[
0 2 3
1 2 −1

] 1 2
3 −1
2 3

 =

[
12 7
5 −3

]
.

Definition 1.6.7. Given a square n× n matrix A, we say that A is symmetric if AT = A.

For example, the matrix

A =


1 −3 4 8
−3 6 2 −5

4 2 7 3
8 −5 3 −4


is a symmetric matrix because A = AT .

1.6.2 Powers of a Square Matrix

Given a square matrix A we define, for natural numbers p,

A0 = I

A1 = A

Ap = AA · · ·A︸ ︷︷ ︸
pmany times

Theorem 1.6.8. If A is a square matrix, and p and q are natural numbers, then ApAq = Ap+q

and (Ap)q = Apq.
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1.6.3 Scalar Products and Vector Norms

Definition 1.6.9. Let x =


x1
x2
...
xn

 and let y =


y1
y2
...
yn

 be vectors in Rn. The scalar product

(or dot product), denoted by x · y, is defined by

x · y = xTy = x1y1 + x2y2 + · · ·+ xnyn.

Definition 1.6.10. The zero vector θ in Rn has all its components equal to 0, that is,

θ =


0
0
...
0

 .
We now state some properties of the scalar product.

Theorem 1.6.11. If x, y, and z are vectors in Rn and c is a scalar, then

1. x · θ = 0.

2. x · x ≥ 0. Furthermore, x · x = 0 if and only if x = θ

3. x · y = y · x

4. (x + y) · z = x · z + y · z

5. (cx) · y = x · (cy) = c(x · y)

Proof. These properties can easily be checked. We prove item 2 by noting that

x · x = x21 + x22 + · · ·+ x2n ≥ 0.

Furthermore,

x · x = 0 if and only if x21 + x22 + · · ·+ x2n = 0

if and only if x1 = x2 = · · · = xn = 0

if and only if x = θ.

This completes the proof of item 2.

Definition 1.6.12. The norm (or length) of a vector x =


x1
x2
...
xn

 in Rn is defined by

‖x‖ =
√

x · x =
√
x21 + x22 + · · ·+ x2n.

Definition 1.6.13. The distance between the vector x =


x1
x2
...
xn

 and the vector y =


y1
y2
...
yn

 is

defined by

‖x− y‖ =
√

(x− y) · (x− y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2
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Exercises 1.6

Pages 69 to 70 of text – #1, 3, 5, 7, 13, 17, 19, 23, 41, 43, 49.

1.7 Linear Independence and Nonsingular Matrices

1.7.1 Linear Combinations

The next idea is one of the most fundamental concepts in Linear Algebra.

Definition 1.7.1. A vector x is a linear combination of the vectors A1,A2, . . . ,An if it can be
expressed in the form

x = x1A1 + x2A2 + · · ·+ xnAn

where x1, x2, . . . , xn are scalars.

Example 1. Consider the three vectors in 4-space:

A1 =


1
2
1
−1

 ,A2 =


1
0
2
−3

 ,A3 =


1
1
0
−2

 .

Is the vector b =


2
1
5
−5

 a linear combination of the vectors A1,A2,A3? In other words, are

there are numbers x1, x2, x3 satisfying the vector equation

x1A1 + x2A2 + x3A3 = b? (1.16)

To answer the question, first let the vectors A1,A2,A3 form the columns of a matrix A and let x
be the column vector consisting of the unknowns x1, x2, x3, that is,

A =
[

A1 A2 A3

]
=


1 1 1
2 0 1
1 2 0
−1 −3 −2

 and x =

 x1
x2
x3

 .
Now, notice that the following 5 equations are equivalent:

1. x1A1 + x2A2 + x3A3 = b

2. x1


1
2
1
−1

+ x2


1
0
2
−3

+ x3


1
1
0
−2

 =


2
1
5
−5



3.


1x1 + 1x2 + 1x3
2x1 + 0x2 + 1x3
1x1 + 2x2 + 0x3
−1x1 − 3x2 − 2x3

 =


2
1
5
−5


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4.


1 1 1
2 0 1
1 2 0
−1 −3 −2


 x1
x2
x3

 =


2
1
5
−5


5. Ax = b

Therefore, x1, x2, x3 is a solution to vector equation (1.16) if and only if x is a solution to the linear
system Ax = b. Transforming the augmented matrix [A |b] into reduced row echelon form we
obtain 

1 0 0 1
0 1 0 2
0 0 1 −1
0 0 0 0

 .
Therefore, the solution x1 = 1, x2 = 2, and x3 = −1 satisfies vector equation (1.16), that is,

b = 1A1 + 2A2 + −1A3 (verify!).

Hence, the vector b can be written as a linear combination of the vectors A1,A2,A3.

From the above solution in Example 1, we can make the following observation.

Theorem 1.7.2. Let A1,A2, . . . ,Ak be a list of vectors in Rn; and let A be the matrix

A =
[

A1 A2 · · · Ak

]
.

A vector b in Rn can be written as a linear combination of the vectors A1,A2, . . . ,Ak if and only
if the linear system Ax = b has a solution x.

Linear Combination Algorithm. In Rn, to determine if a given vector b can be written as a
linear combination of the vectors A1,A2, . . . ,Ak:

Step 1. Form the equation x1A1 + x2A2 + · · ·+ xkAk = b.

Step 2. Rewrite the equation in Step 1 in the form Ax = b where

A =
[

A1 A2 · · · Ak

]
and x =


x1
x2
...
xk

 .

Step 3. Using Gauss-Jordon elimination, solve the linear system Ax = b for x.

Step 4. Either you found a solution or you found that there is no such solution.

• If the system Ax = b does have a solution x1, x2, . . . xk, then this solution shows that
b can be written as a linear combination of vectors A1,A2, . . . ,Ak. One should verify
that b = x1A1 + x2A2 + · · ·+ xkAk.

• If the system Ax = b has no solution, then b can not be written as a linear combination
of vectors A1,A2, . . . ,Ak.
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1.7.2 Linear Independence

Definition 1.7.3. A set of vectors S = {A1,A2, . . . ,Ak} in Rn is linearly dependent if the
vector equation

x1A1 + x2A2 + · · ·+ xkAk = θ (1.17)

has a non-trivial solution x1, x2, . . . , xk. The set of vectors S is linearly independent if equation
(1.17) has only the trivial solution x1 = x2 = · · · = xk = 0.

Remark 1.7.4. A set of vectors S = {A1,A2, . . . ,Ak} is linearly independent if and only if
x1A1 + x2A2 + · · ·+ xkAk = θ implies x1 = x2 = · · · = xk = 0.

We will often say that the vectors A1,A2, . . . ,Ak are linearly independent rather than say that
the set of vectors {A1,A2, . . . ,Ak} is linearly independent.

Problem 2. Consider the three vectors in 4-space (R4):

A1 =


1
2
1
−1

 ,A2 =


1
0
2
−3

 ,A3 =


1
1
0
−2

 .
Are the vectors A1,A2,A3 linearly independent?

Solution. The answer is “yes,” if the only solution x1, x2, x3 to the vector equation

x1A1 + x2A2 + x3A3 = θ (1.18)

is the trivial solution x1 = x2 = x3 = 0. To answer the question, we first let the vectors A1,A2,A3

form the columns of a matrix A and let x be the column vector consisting of the unknowns x1, x2, x3,
that is,

A =
[

A1 A2 A3

]
=


1 1 1
2 0 1
1 2 0
−1 −3 −2

 and x =

 x1
x2
x3

 .
Once again, notice that the following 3 equations are equivalent:

1. x1A1 + x2A2 + x3A3 = θ

2.


1 1 1
2 0 1
1 2 0
−1 −3 −2


 x1
x2
x3

 =


0
0
0
0


3. Ax = θ

Therefore, x1, x2, x3 is a solution to vector equation (1.18) if and only if x is a solution to the
linear system Ax = θ. Transforming the augmented matrix [A |θ] into reduced row echelon form
we obtain 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
Therefore, the only solution to the vector equation (1.18) is the trivial solution x1 = 0, x2 = 0,
and x3 = 0. Hence, the vectors A1,A2,A3 are linearly independent.
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From the above solution for Problem 2, we can make the following observation:

Theorem 1.7.5. Let S = {A1,A2, . . . ,Ak} be a set of vectors in Rn; and let A be the matrix

A =
[

A1 A2 · · · Ak

]
.

The set of vectors S is linearly independent if and only if the homogeneous system Ax = θ has
only the trivial solution x = θ.

Linear Dependence Algorithm. In Rn, to determine if a given set of vectors

{A1,A2, . . . ,Ak}

is linearly dependent:

Step 1. Form the equation x1A1 + x2A2 + · · ·+ xkAk = θ.

Step 2. Rewrite the equation in Step 1 in the form Ax = θ where

A =
[

A1 A2 · · · Ak

]
and x =


x1
x2
...
xk

 .
Step 3. Using Gauss-Jordon elimination, solve the linear system Ax = θ for x.

Step 4. Either you found a non-trivial solution or that the only solution is the trivial solution.

• If the system Ax = θ has a non-trivial solution x, then the vectors A1,A2, . . . ,Ak are
linearly dependent. You should verify that your non-trivial solution x1, x2, . . . , xk
satisfies the vector equation x1A1 + x2A2 + · · ·+ xkAk = θ.

• If the system Ax = θ has only the trivial solution x = θ (that is x1 = x2 = · · · = xk = 0),
then the vectors A1,A2, . . . ,Ak are linearly independent.

Remark 1.7.6. The Linear Dependence Algorithm can also be implemented as follows: To de-
termine whether or not the vectors A1,A2, . . . ,Ak are linearly independent, form the matrix
A =

[
A1 A2 · · · Ak

]
. Put (transform) the matrix A into reduced echelon form, obtaining

the matrix B. If the matrix B has k many leading 1’s, then the vectors A1,A2, . . . ,Ak are linearly
independent. If the matrix B has less than k many leading 1’s, then the vectors A1,A2, . . . ,Ak

are linearly dependent.

Theorem 1.7.7 (Zero-One Law). Let A1,A2, . . . ,Ak be vectors in Rn. Suppose that each one of
these vectors has an i-th coordinate equal to 1 while all of the other vectors have 0 in their i-th
coordinate. Then the vectors A1,A2, . . . ,Ak are linearly independent.

We illustrate the proof of Theorem 1.7.7 with an example.

Example 3. Consider the vectors A1,A2,A3 in R4

A1 =


0
2
1
0

 , A2 =


1
3
0
0

 , A3 =


0
4
0
1

 .
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Note the A1 has a 1 in the 3rd coordinate while A2 and A3 have 0 in the 3rd coordinate. The
vector A2 has a 1 in the 1st coordinate while A1 and A3 have 0 in the 1st coordinate. Finally, we
see that A3 has 1 in the 4th coordinate while A1 and A3 have 0 in the 4th coordinate. Thus, each
one of these vectors has an i-th coordinate which is 1 while all of the other vectors have 0 in their
i-th coordinate. We now show that the vectors A1,A2,A3 are linearly independent. Suppose that
x1, x2, x3 ∈ R satisfy

x1A1 + x2A2 + x3A3 = θ.

Hence,

x1


0
2
1
0

+ x2


1
3
0
0

+ x3


0
4
0
1

 =


0
0
0
0

 .
Hence, 

x2
2x1 + 3x2 + 4x3

x1
x3

 =


0
0
0
0

 .
We conclude that x1 = x2 = x3 = 0. Therefore, the vectors A1,A2,A3 are linearly independent.

Definition 1.7.8. The unit vectors e1, e2, . . . , en in Rn are defined by

e1 =



1
0
0
0
...
0


, e2 =



0
1
0
0
...
0


, e3 =



0
0
1
0
...
0


, . . . , en =



0
0
0
0
...
1


.

We shall refer to e1 as the 1st unit vector, e2 as the 2nd unit vector, and so on. More specifically,
we shall refer to the unit vector ei that contains a 1 in its i-th coordinate as the i-th unit vector.

The following should be noted:

1. It is easy to see that the set {e1, e2, . . . , en} is linearly independent.

2. I = [e1 e2 · · · en] where I is the n× n identity matrix.

Definition 1.7.9. Let A be a square n×n matrix. The matrix A is nonsingular if the only solution
to Ax = θ is x = θ. We say that A singular if there is a non-trivial solution to Ax = θ, that is, a
solution x 6= θ.

Remark 1.7.10. For a square matrix A, A is nonsingular if and only if Ax = θ implies x = θ.

Theorem 1.7.11. Let A = [A1 A2 · · · An] be a square n × n matrix. Then A is nonsingular if
and only if the set of vectors {A1,A2, . . . ,An} is linearly independent.

Proof. This follows from Theorem 1.7.5 above, where k = n.
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Problem 4. Let

A =

 1 1 1
2 0 1
1 2 0

 .
(1) Show that A is nonsingular. (2) Show, for any vector b, that Ax = b has a unique solution.

Solution. We solve (1) and (2) below:

(1) To show that A is nonsingular, we must show that only solution to Ax = θ is x = θ. Putting
the augmented matrix

[A |θ] =

 1 1 1 0
2 0 1 0
1 2 0 0


into reduced echelon form, we get

[I |θ] =

 1 0 0 0
0 1 0 0
0 0 1 0

 .
Thus the only solution to Ax = θ is x = θ. Note that A is row equivalent to the identity
matrix I.

(2) We must show, for any vector b, that Ax = b has a unique solution. By performing the same
row operations as in (1), the augmented matrix

[A |b] =

 1 1 1 b1
2 0 1 b2
1 2 0 b3


can be put into reduced echelon form. We will get a matrix of the form

[I |d] =

 1 0 0 d1
0 1 0 d2
0 0 1 d3

 .
Thus the only solution to Ax = b is x = d.

Remark 1.7.12. Let A be a square n× n matrix. In the system Ax = b the number of variables
(x1, . . . , xn) is the same as the number of equations. Consequently, if the system Ax = b has a
unique solution then, as in the above two examples, the augmented matrix [A |b] can be transformed
by row operations to the matrix [I |d] where I is the n × n identity matrix. Note that all of
the variables in the reduced echelon system Ix = d are “leading variables” and hence, they are
completely determined and the solution is unique.

Problem 5. Let

A =

 1 1 1
2 0 1
3 1 2

 .
Show that A is singular.
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Solution. Putting the augmented matrix

[A |θ] =

 1 1 1 0
2 0 1 0
3 1 2 0


into reduced echelon form, we get

[C |θ] =

 1 0 1
2 0

0 1 1
2 0

0 0 0 0

 .

Note that C 6= I. Thus there is a nontrivial solution to Ax = θ; for example, x =

 −1/2
−1/2

1

 is one

of an infinite number of solutions.

The next theorem actually appears as Theorem 16 in section 1.9 of the text. However, we shall
now state and prove this theorem.

Theorem 1.7.13. Let A be a square matrix. Then A is nonsingular if and only if A is row
equivalent to the identity matrix I.

Proof. Let A be a square matrix.

(⇒). First we prove that if A is nonsingular, then A is row equivalent to the identity matrix I.
Assume A is nonsingular, that is, the unique solution to Ax = θ is x = θ. We prove that A is row
equivalent to the identity matrix I. We are assuming that the unique solution to Ax = θ is x = θ.
Consider the augmented matrix [A |θ]. Now transform this augmented matrix into reduced echelon
form, say [C |θ], by a sequence of row operations. Since the solution to the system is unique, it
follows that there must be n many leading 1’s. Therefore, we must have that [C |θ] = [I |θ]. Note
that the same sequence of row operations transforms the matrix A to the identity matrix I. Hence,
A is row equivalent to the identity matrix I.

(⇐). Now we prove that if A is row equivalent to the identity matrix I, then A is nonsingular.
Assume A is row equivalent to the identity matrix I. We prove that A is nonsingular, that is, we
prove that the only solution to Ax = θ is x = θ. We now solve Ax = θ by using the augmented
matrix [A |θ]. Since A is row equivalent to the identity matrix I, there is a sequence of row
operations applied to A that yields the identity matrix I. Apply these same row operations to the
matrix [A |θ]. We will thus obtain the matrix [I |θ] and hence, x = θ is the unique solution to
Ax = θ. Therefore, A is nonsingular.

Theorem 1.7.14. Let A be a square matrix. For each b ∈ Rn there is a unique solution to Ax = b
if and only if A is nonsingular.

Proof. Let A be a square matrix.

(⇒). First we prove that if for each b ∈ Rn there is a unique solution to Ax = b, then A is
nonsingular. Assume for each b ∈ Rn there is a unique solution to Ax = b. We prove that A is
nonsingular, that is, we prove that the only solution to Ax = θ is x = θ. We know that x = θ is
a solution to Ax = θ. But for b = θ our assumption implies that x = θ must be the only such
solution. Therefore, A is nonsingular.
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(⇐). Now we prove that if A is nonsingular, then for each b ∈ Rn there is a unique solution to
Ax = b. Now since A is nonsingular, we know by Theorem 1.7.13 above that A is row equivalent
to the identity matrix I, that is, there is a sequence of row operations which transform A to I. So,
we can solving the system Ax = b by applying these same row operations to the augmented matrix
[A |b] and thus, obtain [I |d]. Hence, the only solution to Ax = b must be x = d. Therefore, for
each b ∈ Rn there is a unique solution to Ax = b.

Theorem 1.7.15. Let A be a square n× n matrix. Assume that A is nonsingular. Then for any
x,y ∈ Rn, if Ax = Ay, then x = y.

Exercises 1.7

Pages 78 to 79 of text – Odds #1–9; 16, 17, 21, 22, 29, 31, odds 35–45; 49. Prove Theorem 1.7.15.

1.9 Matrix Inverses and Their Properties

Theorem 1.9.1. Let A be square n× n matrix, and let B and C also be n× n matrices. Suppose
that (1) AB = BA = I and (2) AC = CA = I. Then B = C.

Proof. Let A be square n × n matrix, and let B and C also be n × n matrices. Suppose we have
that (1) AB = BA = I and (2) AC = CA = I. Then

AB = BA by (1)

(AB)C = (BA)C multiplying by C on the right

(AB)C = B(AC) by associativity

IC = BI by (1) and (2)

C = B because I is the identity matrix.

Therefore, B = C and this completes the proof.

Theorem 1.9.1 allows us to make the following definition.

Definition 1.9.2. A square matrix A is invertible, if there is a matrix B (of the same size as A)
such that AB = BA = I. We call this matrix B the inverse of A and denote it A−1. If a square
matrix A has no inverse, then A is called noninvertible.

Example 1. Let A be the matrix A =

[
2 3
2 2

]
. One can check for the matrix B =

[
−1 3

2
1 −1

]
that AB = BA = I2. Hence, A is has an inverse and A−1 = B.

1.9.1 Using Inverses to Solve Linear Systems

When a linear system has the same number of equations as the number of variables, there is a new
method for solving the system if the square coefficient matrix is invertible.

Theorem 1.9.3. If A is an invertible n× n matrix, then for any b ∈ Rn the system of equations
Ax = b has exactly one solution.



1.9. MATRIX INVERSES AND THEIR PROPERTIES 45

Proof. We prove that if A is an invertible n×n matrix, then for each b ∈ Rn the system of equations
Ax = b has exactly one solution. So assume that A is invertible, that is, A−1 exists. We prove that
for any b ∈ Rn the system of equations Ax = b has exactly one solution. Let b ∈ Rn be arbitrary.
We must show that the system Ax = b has exactly one solution. That is, we want to solve for the
x ∈ Rn such that Ax = b. By multiplying both sides of the equation Ax = b by A−1 we get

A−1Ax = A−1b

Ix = A−1b

x = A−1b.

Therefore the one and only solution is x = A−1b. This completes the proof of the theorem.

Example 2. Consider the system of equations

3x1 + 4x2 − x3 = 1

x1 + 3x3 = 2

2x1 + 5x2 − 4x3 = −1.

We write this system in matrix form 3 4 −1
1 0 3
2 5 −4

 x1
x2
x3

 =

 1
2
−1



where A =

 3 4 −1
1 0 3
2 5 −4

, x =

 x1
x2
x3

 and b =

 1
2
−1

. Using a method for getting A−1 (see

section 1.9.4) one obtains

A−1 =


3
2 −11

10 −6
5

−1 1 1

−1
2

7
10

2
5

 .
Therefore, the unique solution to the system is given by

x = A−1b =


3
2 −11

10 −6
5

−1 1 1

−1
2

7
10

2
5


 1

2
−1

 =

 1
2
0
1
2


1.9.2 A proof that AB = I implies BA = I

Lemma 1.9.4. Let A be a square n×n matrix. If A is nonsingular, then there is an n×n matrix
B such that AB = I.

Proof. Let A be a square n × n matrix. We must prove that if A is nonsingular, then there is an
n×n matrix B such that AB = I. So, assume that A is nonsingular. We must find a n×n matrix
B and then prove that AB = I. Since A is nonsingular, we know by Theorem 1.7.14 that for each
b ∈ Rn there is a unique solution to Ax = b. Let us apply this result to each of the unit vectors
e1, e2, . . . , en in Rn. So there is a unique solution to Ax = e1, call this solution B1. Let B2 be
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the unique solution to Ax = e2. Continue to get these solutions for each the unit vectors and so,
finally let Bn be the unique solution to Ax = en. So, we see that

AB1 = e1, AB2 = e2, . . . , ABn = en. (1.19)

Let B be the n× n matrix B = [B1 B2 · · · Bn]. We now show that AB = I as follows:

AB = A[B1 B2 · · · Bn]

= [AB1 AB2 · · · ABn] by Theorem 1.5.13

= [e1 e2 · · · en] by equations (1.19) above

= I since I = [e1e2 · · · en].

Therefore, AB = I.

Lemma 1.9.5. Let A and B be square n× n matrices. If AB = I, then B is nonsingular.

Proof. Let A and B be square n×n matrices. We must prove that if AB = I, then B is nonsingular.
So, assume that AB = I. We now prove that B is nonsingular, that is, the only solution to Bx = θ
is x = θ. We can now solve the equation Bx = θ as follows:

Bx = θ

ABx = Aθ multiply on the left by A

ABx = θ because Aθ = θ

Ix = θ because AB = I

x = θ because Ix = x.

Thus, the only solution to Bx = θ is x = θ. Therefore, B is nonsingular.

Theorem 1.9.6. Let A and B be square n× n matrices. If AB = I, then BA = I.

Proof. Let A and B be square n×n matrices. We prove that if AB = I, then BA = I. So, assume
that AB = I. We must prove that BA = I. We shall use Lemmas 1.9.4 and 1.9.5 above. Since
AB = I, we know by Lemma 1.9.5 that B is nonsingular. So, Lemma 1.9.4 implies that there is an
n× n matrix C such that BC = I. Using some matrix algebra, we show that C = A as follows:

AB = I by assumption

(AB)C = IC multiply on the right by C

(AB)C = C because IC = C

A(BC) = C by associativity of matrix mult.

AI = C because BC = I

A = C because AI = A.

Hence, A = C. Therefore, BA = BC = I, that is, BA = I.

1.9.3 Existence of Inverses

Theorem 1.9.7. Let A a square matrix. Then A has an inverse if and only if A is nonsingular.
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Proof. Let A be a square matrix.

(⇒). First we prove that if A has an inverse, then A is nonsingular. Assume A has an inverse, that
is, A−1 exists. Thus, A−1A = I. Lemma 1.9.5 now implies that A is nonsingular.

(⇐). Now we prove that if A is nonsingular, then A has an inverse. Assume A is nonsingular. We
prove that A has an inverse, that is, we must show that there is a matrix B such that AB = BA = I.
Since A is nonsingular, we know by Lemma 1.9.4 that there is a matrix B such that AB = I. Now,
Theorem 1.9.6 implies that BA = I. Thus, the matrix given by Lemma 1.9.4 is the inverse of A,
that is, B = A−1. Therefore, A has an inverse.

1.9.4 Calculating the Inverse

The above results give us a method for finding the inverse of a nonsingular square matrix A. This
method is based on the proof of Lemma 1.9.4. In other words to find A−1, we simultaneously solve
the systems

Ax = e1, Ax = e2, . . . , Ax = en

by forming the augmented matrix [A | e1 e2 · · · en] = [A | I]. Put this matrix into reduced echelon
form, obtaining [I |B1 B2 · · · Bn. Therefore,

AB1 = e1, AB2 = e2, . . . , ABn = en (1.20)

Let B be the n× n matrix B = [B1 B2 · · · Bn]. Thus, we can show that AB = I as follows:

AB = A[B1 B2 · · · Bn]

= [AB1 AB2 · · · ABn] by Theorem 1.5.13

= [e1 e2 · · · en] by equations (1.20) above

= I since I = [e1e2 · · · en].

Therefore, AB = I and thus, A−1 = [B1 B2 · · · Bn].

Procedure for Finding a Inverse. To determine if the square matrix A has an inverse, do the
following:

Step 1. Form the matrix [A | I], where the identity matrix I has the same size as A.

Step 2. Transform the matrix [A | I] into reduced echelon form [M |B].

Step 3. Either M = I or M 6= I.

• If M = I, then A−1 = B.

• If M 6= I, then A−1 does not exist.

In the next problem, we will apply the above procedure to determine whether or not the matrix 3 4 −1
1 0 3
2 5 −4


has an inverse.

Problem 3. Consider the matrix A =

 3 4 −1
1 0 3
2 5 −4

. Find its inverse (if it exists).
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Solution. Applying Step 1 we obtain the matrix [A | I] =

 3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1

. We now apply

Step 2 and transform [A | I] into reduced echelon form as follows:

[A | I] =

 3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1


R1 ↔ R2 1 0 3 0 1 0

3 4 −1 1 0 0
2 5 −4 0 0 1


−3R1 +R2 → R2 1 0 3 0 1 0

0 4 −10 1 −3 0
2 5 −4 0 0 1


−2R1 +R3 → R3 1 0 3 0 1 0

0 4 −10 1 −3 0
0 5 −10 0 −2 1


R2 ↔ R3 1 0 3 0 1 0

0 5 −10 0 −2 1
0 4 −10 1 −3 0


−R3 +R2 → R2 1 0 3 0 1 0

0 1 0 −1 1 1
0 4 −10 1 −3 0


−4R2 +R3 → R3 1 0 3 0 1 0

0 1 0 −1 1 1
0 0 −10 5 −7 −4


− 1

10
R3 → R3 1 0 3 0 1 0

0 1 0 −1 1 1
0 0 1 −1

2
7
10

2
5


−3R3 +R1 → R1

[M |B] =

 1 0 0 3
2 −11

10 −6
5

0 1 0 −1 1 1
0 0 1 −1

2
7
10

2
5


Since M = I, we conclude from Step 3 that

A−1 = B =

 3
2 −11

10 −6
5

−1 1 1
−1

2
7
10

2
5

 .
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1.9.5 Inverse Properties

Theorem 1.9.8. Let A and B be square n× n matrices. Then:

1. If A has an inverse, then A−1 has an inverse and (A−1)−1 = A.

2. If A and B have inverses, then AB has an inverse and (AB)−1 = B−1A−1.

3. If A has an inverse and k ∈ R is non-zero, then kA has an inverse and (kA)−1 = 1
kA
−1.

4. If A is has an inverse, then AT is has an inverse and (AT )−1 = (A−1)T .

Proof. We just prove 1, 2 and 4. To prove 1, we have that AA−1 = I and A−1A = I. Thus,
(A−1)−1 = A. To prove 2, by the properties of matrix operations, we obtain

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

Similarly, one can show that (B−1A−1)(AB) = I. Therefore, (AB)−1 = B−1A−1. To prove item 4,
since AA−1 = I we conclude that (AA−1)T = IT . Since IT = I, we see that (AA−1)T = I. From
Theorem 1.6.6(2), we deduce that (A−1)TAT = I. Similarly, because A−1A = I it follows that
AT (A−1)T = I. Therefore, (AT )−1 = (A−1)T .

Corollary 1.9.9. If A1, A2, . . . , Ar are invertible matrices having the same same size, then the
matrix A1A2 · · ·Ar is also invertible, and (A1A2 · · ·Ar)−1 = A−1r · · ·A−12 A−11 .

Proof. This can proved by induction on r, using Theorem 1.9.8(2).

If A is an invertible matrix and −p is a negative integer (p is a natural number), then we define

A−p = (A−1)p = A−1A−1 · · ·A−1︸ ︷︷ ︸
pmany times

We end our discussion of Chapter 1 with the statement of the following very important
theorem. This theorem will be used extensively throughout the semester.

Theorem 1.9.10. If A is an n× n (square) matrix, then the following statements are equivalent:

1. A is nonsingular, that is, Ax = θ has only the trivial solution (here, θ = [0]n×1).

2. The column vectors of A are linearly independent.

3. For every n× 1 matrix b, the system Ax = b has a (unique) solution.

4. A has an inverse.

5. A is row equivalent to In.

Proof. The above theorem follows directly from Theorems 1.7.11, 1.7.14, 1.9.7 and 1.7.13.

Exercises 1.9

Pages 102 to 103 of text – #1, 3, 6, 7, 19, 23, 25, 27, 29, 33, 35.



Chapter 3

The Vector Space Rn

Vector spaces are the main topic of interest in linear algebra. A vector space is a mathematical
structure formed by a collection of vectors that can be added together and multiplied by real
numbers. In this chapter we will investigate vector spaces and the concept of dimension, which
specifies the number of independent directions in the vector space.

3.1 Introduction

Recall that Rn is the space of all n-vectors x =


x1
x2
...
xn

 where each component xi is a real

number. Also recall the following vector operations:

• For vectors x =


x1
x2
...
xn

 and y =


y1
y2
...
yn

 in Rn, we have that x + y =


x1 + y1
x2 + y2

...
xn + yn

 .

• For vectors x =


x1
x2
...
xn

 and y =


y1
y2
...
yn

 in Rn, we have that x− y =


x1 − y1
x2 − y2

...
xn − yn

 .

• For a vector x =


x1
x2
...
xn

 and a scalar c, we have that cx =


cx1
cx2

...
cxn

 .

• We write θ =


0
0
...
0

 for the “zero” vector, and define −x =


−x1
−x2

...
−xn

.

50
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3.1.1 Vectors in 3-space

Recall that R3 is the space of all 3-vectors x =

 x1
x2
x3

 where each component xi is a real

number. Also recall the following vector operations:

• For vectors x =

 x1
x2
x3

 and y =

 y1
y2
y3

 in R3 is defined by x + y =

 x1 + y1
x2 + y2
x3 + y3

 .
• For vectors x =

 x1
x2
x3

 and y =

 y1
y2
y3

 in R3 is defined by x− y =

 x1 − y1
x2 − y2
x3 − y3

 .
• For a vector x =

 x1
x2
x3

 by a scalar c is defined by cx =

 cx1
cx2
cx3

 .
• We write θ =

 0
0
0

 for the “zero” vector, and define −x =

 −x1−x2
−x3

.

The graphs in Figure 3.1 illustrate how vectors in R3 are (1) added, (2) subtracted, (3) scalar
multiplied, and (4) made “negative.”

x

y

x + y

(1) Graph of vector x+ y

x

y

x− y

(2) Graph of vector x− y

x

cx

(3) Graph of vector cx

x

−x

(4) Graph of vector −x
Figure 3.1: Vector Operations

Example 1. Consider the vector space R2. In Figure 3.2 we give a geometric interpretation of the
subset W of R2 defined by

W =

{[
x1
x2

]
: x1 + x2 = 0

}
.
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x1

x2

W

Figure 3.2: In Example 1, W is the above line in 2-Space

Example 2. Consider the vector space R2. In Figure 3.3 we give a geometric interpretation of the
subset W of R2 defined by

W =

{[
x1
x2

]
: x1 + x2 = 1

}
.

x1

x2

W

Figure 3.3: In Example 2, W is the above line in 2-Space

Example 3. Consider the vector space R3. In Figure 3.4 we give a geometric interpretation of the
subset W of R3 defined by

W =


 x1
x2
x3

 : x1 +
1

4
x2 + x3 = 0

 .

x1

x2

x3

W

Figure 3.4: In Example 3, W is the above plane in 3-Space
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Example 4. Consider the vector space R3. In Figure 3.5 we give a geometric interpretation of the
subset W of R3 defined by

W =


 x1
x2
x3

 : x1 +
1

4
x2 + x3 = 1

 .

x1

x2

x3

W

Figure 3.5: In Example 4, W is the above plane in 3-Space

3.2 Vector Space Properties

The following algebraic properties of vector addition can easily be checked.

Theorem 3.2.1. If x, y, and z are vectors in Rn and if a and b are scalars, then the following
properties hold:

Closure properties:

1. x + y is a vector in Rn, (that is, Rn is closed under addition).

2. ax is a vector in Rn, (that is, Rn is closed under scalar multiplication).

Addition properties:

1. x + y = y + x

2. x + (y + z) = (x + y) + z

3. x + θ = θ + x = x

4. x + (−x) = θ

Scalar multiplication properties:

1. a(bx) = (ab)x

2. a(x + y) = ax + ay

3. (a+ b)x = ax + bx

4. 1x = x
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3.2.1 Subspaces

Definition 3.2.2. A subset W of a vector space Rn is called a subspace of Rn, if θ is in W and
W satisfies all the properties in Theorem 3.2.1 where Rn is replaced by W .

Theorem 3.2.3. Let W be a subset of Rn. Then W is a subspace of Rn if and only if the following
conditions hold:

(s1) θ is in W .

(s2) If x and y are vectors in W , then x + y is in W .

(s3) If c is any scalar and x is a vector in W , then cx is in W .

Proof. We first prove that if W is a subspace, the statements (s1)-(s3) hold. Then we will prove
the converse.

(⇒). Suppose that W is a subspace of Rn. We now show that (s1), (s2) and (s3) hold. Since
θ ∈W , (s1) holds. To prove (s2) and (s3), let x and y be vectors in W and let c be a scalar. Since
W is a subspace, it satisfies the closure properties. Therefore, x + y is in W and cx is in W .

(⇐). Suppose that W satisfies (s1), (s2) and (s3) above. We must show that W is a subspace of Rn.
To see that W is a subspace of Rn, one has to first show that W satisfies the addition properties
and the scalar multiplication properties. Since Rn satisfies these properties, it follows that W also
satisfies them. So the only properties that needs to be verified are the closure properties. But these
properties hold by our assumption. Hence, W is a subspace of Rn.

Definition 3.2.4. Let W be a subset of Rn.

1. If for all x,y ∈W we have that x + y ∈W , then we say that W is closed under addition.

2. If for all x ∈W and all c ∈ R we have that cx ∈W , then W is said to be closed under scalar
multiplication.

3.2.2 Verifying That Subsets Are Subspaces

To verify that a subset W is subspace of Rn, do the following:

Step 1. An algebraic specification for the subset W is given, and this specification serves as a
test for determining whether a vector (from Rn) is or is not in W .

Step 2. Verify that θ satisfies the algebraic specification of W .

Step 3. Choose two arbitrary vectors x and y in W . Thus x and y are in Rn, and both vectors
x and y satisfy the algebraic specification of W .

Step 4. Verify that the sum vector x + y meets the specification of W .

Step 5. For an arbitrary scalar c verify that the scalar multiple vector cx meets the specification
of W .

Problem 1. Let W be the subset of R3 defined by

W =


 x1
x2
x3

 : x2 = 2x1 and x3 = 3x1

 .

Verify that W is a subspace of R3 and give a geometric interpretation of W .
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Solution. For clarity, we explicitly number the five steps used to verify that W is a subspace of R3.

1. The algebraic specification for x to be in W is

x2 = 2x1 and x3 = 3x1 (3.1)

2. Verify that θ =

 0
0
0

 satisfies the above algebraic specification. This is clear.

3. Let f and g be two arbitrary vectors in W :

f =

 f1
f2
f3

 and g =

 g1
g2
g3

 .
Because f and g are in W , each must satisfy the algebraic specification of W . That is,

f2 = 2f1 and f3 = 3f1 (3.2)

g2 = 2g1 and g3 = 3g1. (3.3)

4. Next, verify that the sum f + g is in W ; that is, verify equation (3.1). Now, the sum f + g is
given by

f + g =

 f1 + g1
f2 + g2
f3 + g3

 .
By (3.2) and (3.3), we have

(f2 + g2) = 2(f1 + g1) and (f3 + g3) = 3(f1 + g1).

Thus, f + g is in W whenever f and g are in W (see equation (3.1)).

5. Let f ∈ W and c ∈ R, where f =

 f1
f2
f3

. As f ∈ W , we have that f2 = 2f1 and f3 = 3f1.

Thus,
cf2 = c(2f1) = 2(cf1) and cf3 = c(3f1) = 3(cf1).

Therefore, the vector

cf =

 cf1
cf2
cf3

 .
is in W , whenever f is in W .

We conclude that W is a subspace of R3. Note that every vector x in W can be expressed as

x =

 x1
x2
x3

 =

 x1
2x1
3x1

 = x1

 1
2
3

 .
So, W has the vector v1 =

 1
2
3

 as a “basis” and so, W has dimension one. Geometrically, W is

an infinite line through the origin. The graph of v1 and W are given in Figure 3.6.
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v1

1

2

3
x2

x1

x3

Graph of vector v1

W

v1
x2

1

2

3

x3

x1

Graph of subspace W

Figure 3.6: The Subspace W in Problem 1

Problem 2. Consider the vector space R3. Let W =


 x1
x2
x3

 : x1 = x2 + x3

. Show that W is

a subspace of R3.

Problem 3. Consider the vector space R3. Let W =


 x1
x2
x3

 : x1 = x2 · x3

. Show that W is

not a subspace of R3.

Exercises 3.2

Pages 174 to 175 of text – #1, 2, 3, 9, 13, 15, 16, 18, 31.

3.3 Examples of Subspaces

3.3.1 The Span of a set of vectors

Theorem 3.3.1. Let v1,v2, . . . ,vr be vectors in a vector space Rn. Let W be the set consisting
of all linear combinations of v1,v2, . . . ,vr; that is, W is the set of all vectors of the form

x = a1v1 + a2v2 + · · ·+ arvr

where a1, a2, . . . , ar are real numbers. Then W is a subspace of Rn.

Proof. Note that θ ∈W since

θ = 0v1 + 0v2 + · · ·+ 0vr.

So, to show that W is a subspace it is sufficient to show that W is closed under addition and scalar
multiplication. To do this let x and y be in W and let c be a scalar. Since x and y are linear
combinations of the vectors v1,v2, . . . ,vr there are scalars a1, a2, . . . , ar and b1, b2, . . . , br such that

x = a1v1 + a2v2 + · · ·+ arvr
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and
y = b1v1 + b2v2 + · · ·+ brvr.

But then,
x + y = (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ar + br)vr

and
cx = (ca1)v1 + (ca2)v2 + · · ·+ (car)vr

are also linear combinations of the vectors v1,v2, . . . ,vr. Hence, x+y ∈W and cx ∈W . Therefore,
by Theorem 3.2.3, W is a subspace of Rn.

Definition 3.3.2. The subspace W spanned by the set of vectors S = {v1,v2, . . . ,vr} will be
denoted by Span(S) or Span{v1,v2, . . . ,vr}. [The book uses the notation Sp(S).]

Problem 1. Consider the three vectors in 4-space:

v1 =


1
2
1
−1

 ,v2 =


1
0
2
−3

 ,v3 =


1
1
0
−2

 .

Is the vector y =


2
1
5
−5

 in the Span{v1,v2,v3}, that is, is y a linear combination of the vectors

v1,v2,v3?

Solution. The answer is “yes” if there are numbers x1, x2, x3 satisfying the vector equation

x1v1 + x2v2 + x3v3 = y. (3.4)

To answer the question, first let the vectors v1,v2,v3 form the columns of a matrix A and let x be
the column vector consisting of the unknowns x1, x2, x3, that is,

A =
[

v1 v2 v3

]
=


1 1 1
2 0 1
1 2 0
−1 −3 −2

 and x =

 x1
x2
x3

 .
Now, notice that the following 5 equations are equivalent:

1. x1v1 + x2v2 + x3v3 = y

2. x1


1
2
1
−1

+ x2


1
0
2
−3

+ x3


1
1
0
−2

 =


2
1
5
−5



3.


1x1 + 1x2 + 1x3
2x1 + 0x2 + 1x3
1x1 + 2x2 + 0x3
−1x1 − 3x2 − 2x3

 =


2
1
5
−5


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4.


1 1 1
2 0 1
1 2 0
−1 −3 −2


 x1
x2
x3

 =


2
1
5
−5


5. Ax = y

Therefore, x1, x2, x3 is a solution to vector equation (3.4) if and only if x is a solution to the linear
system Ax = y. Transforming the augmented matrix [A |y] into reduced row echelon form we
obtain 

1 0 0 1
0 1 0 2
0 0 1 −1
0 0 0 0

 .
Therefore, the solution x1 = 1, x2 = 2, and x3 = −1 satisfies vector equation (3.4), that is,

y = 1v1 + 2v2 + −1v3 (verify!).

Hence, the vector y can be written as a linear combination of the vectors v1,v2,v3; Thus, y is in
the Span{v1,v2,v3}.

From the above solution for Problem 1, we can make the following observation:

Theorem 3.3.3. Let A1,A2, . . . ,Ak be a set of vectors in Rn and let A be the matrix A =[
A1 A2 · · · Ak

]
. A vector y in Rn is in the subspace W = Span{A1,A2, . . . ,Ak} if and

only if the linear system Ax = y has a solution x.

Problem 2 (Example 1 on page 178 text). Let u and v be the following vectors in R3:

u =

 2
1
0

 and v =

 0
1
2

 .
1. Obtain a algebraic specification for the subspace Span{u,v} of R3.

2. Using the vectors u and v, give a geometric interpretation of Span{u,v}.

Solution. We first obtain a algebraic specification for the subspace Span{u,v}. A vector y ∈ R3

is in Span{u,v} if and only if Ax = y has a solution x, where A =
[

u v
]
. We investigate the

conditions on y =

 y1
y2
y3

 which will imply that the system Ax = y is consistent. That is, we solve

the system Ax = y by forming the augmented matrix [A |y] and put it into reduced echelon form.
We shall do this as follows:

[A |y] =

 2 0 y1
1 1 y2
0 2 y3

 .
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Now, using row operations, we transform the matrix [A |y] into the ‘reduced echelon form as follows:

[A |b] =

 2 0 y1
1 1 y2
0 2 y3


1

2
R1 → R1 1 0 y1

2
1 1 y2
0 2 y3


−R1 +R2 → R2 1 1 y2
0 1 y2 − y1

2
0 2 y3


(−R2 +R1 → R1)&(−2R2 +R3 → R3) 1 0 y1

2
0 1 y2 − y1

2
0 0 y1 − 2y2 + y3


So the system Ax = y will have a solution if and only if y1−2y2+y3 = 0; that is, when y1 = 2y2−y3.
Hence,

Span{u,v} =


 y1
y2
y3

 : y1 = 2y2 − y3

 .

We give a geometric give a geometric interpretation of Span{u,v} in Figure 3.7

W
y1

y2

y3

Figure 3.7: W = Span{u,v}

3.3.2 The Null Space of a Matrix

Definition 3.3.4. Consider the vector space Rn. Let A be an m× n matrix. Let N (A) be set of
all vectors x in Rn which are solutions to the homogeneous system of equations Ax = θ, that is,

N (A) = {x ∈ Rn : Ax = θ}.

The set N (A) is called the null space of A or the kernel or A.
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Theorem 3.3.5. Consider the vector space Rn. Let A be an m × n matrix. Then N (A) is a
subspace of Rn.

Proof. Note that θ ∈ N (A) since

Aθ = θ.

So, to show that N (A) is a subspace it is sufficient to show that N (A) is closed under addition and
scalar multiplication. To do this let x and y be in N (A) and let c be a scalar. Since x and y are
in N (A), it follows that

Ax = θ and Ay = θ. (3.5)

We must show that x + y is in N (A); that is, we must show that A(x + y) = θ. To see this, note
that

A(x + y) = Ax +Ay by distribution of matrix mult.

= θ + θ by equations in (3.5) above

= θ since θ + θ = θ.

Hence, x+y ∈ N (A). Now we must show that cx is in N (A); that is, we must show that A(cx) = θ
given that x is in N (A). To see this, note that

A(cx) = cAx by property of matrix mult.

= cθ by first equation in (3.5) above

= θ since cθ = θ.

Hence, cx ∈ N (A). Therefore, by Theorem 3.2.3, N (A) is a subspace of Rn.

The next problem will give a method for finding a set S of vectors in N (A) which span N (A),
that is, Span(S) = N (A).

Problem 3. Find a set of vectors in the null space of A =

 1 1 2 9 18
2 9 −10 39 78
1 −6 1 −27 −54

 which

spans this null space.

Solution. First notice, since A is a 3×5 matrix, that the null space of A is a subspace of R5. Applying
Gauss-Jordon reduction to the augmented matrix [A |θ], we obtain the augmented matrix

[C |θ] =

 1 0 0 2 4 0
0 1 0 5 10 0
0 0 1 1 2 0

 .
Solving the equivalent system of equations Cx = θ, we obtain

x1 = −2x4 − 4x5

x2 = −5x4 − 10x5

x3 = −x4 − 2x5

x4 = x4

x5 = x5.
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Therefore, every solution to Ax = θ can be written in the form
x1
x2
x3
x4
x5

 = x4


−2
−5
−1

1
0

+ x5


−4
−10
−2

0
1

 .

So the vectors y1 =


−2
−5
−1

1
0

 and y2 =


−4
−10
−2

0
1

 span the null space of A. We conclude that

Span{y1,y2} = N (A).

Observation. The above vectors y1 and y2 are linearly independent (see Theorem 1.7.7).

3.3.3 The Range of a Matrix

Definition 3.3.6. Consider the vector space Rm. Let A be an m× n matrix. Let R(A) be set of
all vectors y in Rm such that Ax = y for some x ∈ Rn, that is,

R(A) = {y ∈ Rm : Ax = y for some x ∈ Rn}.

Theorem 3.3.7. Consider the vector space Rm. Let A be an m × n matrix. Then R(A) is a
subspace of Rm.

Proof. Recall that there is another way to interpret the product Ax. The product Ax is a linear
combination of the column vectors of the matrix A = [A1 A2 · · · An] (where each Ai ∈ Rm); that
is,

A


x1
x2
...
xn

 = x1A1 + x2A2 + · · ·+ xnAn.

It follows that the matrix equation Ax = y is equivalent to the vector equation

x1A1 + x2A2 + · · ·+ xnAn = y.

Therefore, R(A) = Span{A1,A2, . . . ,An}. Hence, R(A) is a subspace of Rm by Theorem 3.3.1.

Given a matrix A, we shall refer to R(A) as the range space of A.

Problem 4 (Example 4 on page 182 of text). Describe, in terms of an algebraic specification, the
range space of the 3× 4 matrix

A =

 1 1 3 1
2 1 5 4
1 2 4 −1

 .
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Solution. A vector y ∈ R3 is in the range of A if and only if Ax = y has a solution x. We investigate

the conditions on y =

 y1
y2
y3

 which will imply that the system Ax = y is consistent. That is, we

solve the system Ax = y by forming the augmented matrix [A |y] and put it into reduced echelon
form. Now, we transform the matrix [A |y] into the reduced echelon form as follows:

[A |y] =

 1 1 3 1 y1
2 1 5 4 y2
1 2 4 −1 y3


(−2R1 +R2 → R2)&(−R1 +R3 → R3) 1 1 3 1 y1

0 −1 −1 2 y2 − 2y1
0 1 1 −2 y3 − y1


−R2 → R2 1 1 3 1 y1

0 1 1 −2 2y1 − y2
0 1 1 −2 y3 − y1


(−R2 +R1 → R1)&(−R2 +R3 → R3) 1 0 2 3 y2 − y1

0 1 1 −2 2y1 − y2
0 0 0 0 y3 + y2 − 3y1


So the system Ax = y will have a solution if and only if −3y1 + y2 + y3 = 0; that is, when
y3 = 3y1 − y2. Hence,

R(A) =


 y1
y2
y3

 : y3 = 3y1 − y2

 .

Exercise 3.3.8. Let A be as in the above problem. Using the above algebraic specification for
R(A), find a spanning set of vectors for R(A).

3.3.4 The Column Space of a Matrix

Definition 3.3.9. Given a matrix A = [A1 A2 · · · An] (where each Ai ∈ Rm), we call

Span{A1,A2, . . . ,An}
the column space of A and we shall write Cspace(A) = Span{A1,A2, . . . ,An}.
Theorem 3.3.10. Let A be a matrix. Then the column space of A equals the range space of A;
that is, Cspace(A) = R(A).

Proof. This follows from the proof of Theorem 3.3.7.

3.3.5 The Row Space of a Matrix

A vector in Rn can be also be interpreted as a “row vector.” For example, we can interpret the

vector A =


1
2
3
4

 as the row vector a = [1 2 3 4]. Note that AT = a.
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Addition and scalar multiplication of row vectors is defined as for column vectors. For example,
let a = [1 2 3 4] and b = [−1 2 − 3 − 5]. Then

a + 3b = [−2 8 − 6 − 11]

Definition 3.3.11. Given a matrix A =


a1

a2
...

am

 (where each ai ∈ Rn is a row vector), we call

Span{a1,a2, · · · ,am} the row space of A and we shall write Rspace(A) = Span{a1,a2, · · · ,am}.

Example 5. Let

A =

 1 2 3 4
1 1 −2 −3
0 −1 2 3


be a 3× 4 matrix. Then the row space of A is Span{a1,a2,a3}, where

a1 = [1 2 3 4], a2 = [1 1 − 2 − 3], a3 = [0 − 1 2 3].

The following three lemmas imply that the space, spanned by a set of row vectors, is not changed
by performing row operations on the set of vectors.

Lemma 3.3.12. Suppose that a1,a2,a3,a4 are vectors in Rn. Let c be a scalar and let

a′3 = ca2 + a3. (3.1)

Then Span{a1,a2,a3,a4} = Span{a1,a2,a
′
3,a4}.

Proof. Let y be a vector in Span{a1,a2,a3,a4}, so

y = c1a1 + c2a2 + c3a3 + c4a4 (3.2)

for some scalars c1, c2, c3, c4. We must show that y can also be written as a linear combination of
{a1,a2,a

′
3,a4}. Solving for a3 in equation (3.1) and substituting in equation (3.2) yields

y = c1a1 + c2a2 + c3(a
′
3 − ca2) + c4a4.

Now, expanding and collecting terms gives

y = c1a1 + (c2 − c3c)a2 + c3a
′
3 + c4a4.

Thus, y can be written as a linear combination of {a1,a2,a
′
3,a4}. Similarly, given a vector x in

Span{a1,a2,a
′
3,a4}, one can show that x is in Span{a1,a2,a3,a4}. Therefore, Span{a1,a2,a3,a4} =

Span{a1,a2,a
′
3,a4} and this completes the proof.

Lemma 3.3.13. Suppose that a1,a2,a3,a4 are vectors in Rn. Let c 6= 0 be a scalar and let
a′3 = ca3. Then Span{a1,a2,a3,a4} = Span{a1,a2,a

′
3,a4}.

Proof. Exercise.

Lemma 3.3.14. Suppose that a1,a2,a3,a4 are vectors in Rn. Then, upon interchanging a2 and
a3, we have that Span{a1,a2,a3,a4} = Span{a1,a3,a2,a4}.
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Theorem 3.3.15. If A and B are row equivalent m× n matrices, the row spaces of A and B are
equal.

Proof. Suppose that A =


a1

a2
...

am

 and B =


b1

b2
...

bm

. Since A and B are row equivalent, one can

obtain B by applying a sequence of row operations on A. Since the row space of A is given by
Span{a1,a2, . . . ,am } and the row space of B is given by Span{b1,b2, . . . ,bm }. Lemmas 3.3.12
to 3.3.14 imply that this same sequence of row operations applied to the row vectors in the set
{a1,a2, . . . ,am } do not change the spanned space. Therefore,

Span{a1,a2, . . . ,am } = Span{b1,b2, . . . ,bm },

that is, the row spaces of A and B are equal. This completes the proof.

Observations. Let A = [A1 A2 · · · An] be an m× n matrix.

1. The null space N (A) is a subspace of Rn.

2. The row space Rspace(A) is a subspace of Rn.

3. The range space R(A) is a subspace of Rm.

4. Cspace(A) = Span{A1,A2, . . . ,An} = R(A)

5. Cspace(A) = Rspace(AT ), that is, the column space of a matrix A is the same as the row
space of AT , the transpose of A.

3.3.6 Minimal Spanning Set

Theorem 3.3.15 and item 5 of the above Observations suggests the following procedure for obtaining
a “minimal” set of spanning vectors for a subspace. A minimal spanning set is a spanning set
that has the smallest number of vectors needed to span the subspace.

Minimal Spanning Set Procedure. Given a set of vectors S = {A1,A2, . . . ,Ak} in Rn, to find
a minimal set S′ for which Span(S′) = Span(S), do the following:

Step 1. Form the matrix A = [A1 A2 · · · Ak].

Step 2. Form the matrix AT =


AT

1

AT
2
...

AT
k

.

Step 3. Transform the matrix AT into reduced echelon form BT =


BT

1

BT
2
...

BT
k

.

Step 4. Form the matrix B = [B1 B2 · · · Bk].

Step 5. Since Rspace(AT ) = Rspace(BT ) (by Theorem 3.3.15), it follows that Cspace(A) =
Cspace(B). Thus the set S′ consisting of the nonzero column vectors of B, is a minimal
set such that Span(S′) = Span(S).
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Problem 6 (Example 5 on page 184 of text). Let S = {v1,v2,v3,v4} where

v1 =

 1
2
1

v2 =

 2
3
5

v3 =

 1
4
−5

v4 =

 2
5
−1

 .
Find a minimal set S′ such that Span(S′) = Span(S).

Solution. We will solve this problem by applying the above procedure.

1. Form the matrix A = [v1 v2 v3 v4] =

 1 2 1 2
2 3 4 5
1 5 −5 −1

.

2. Form the matrix AT =


1 2 1
2 3 5
1 4 −5
2 5 −1

.

3. Transform the matrix AT into reduced echelon form BT =


1 0 7
0 1 −3
0 0 0
0 0 0

.

4. Form the matrix B = [B1 B2 B3 B4] =

 1 0 0 0
0 1 0 0
7 −3 0 0

.

5. Thus the set S′ = {B1,B2} consisting of the nonzero column vectors of B, is a minimal
set such that Span(S′) = Span(S).

Observation. The above vectors B1 and B2 are linearly independent (see Theorem 1.7.7).

3.3.7 Summary

Let A be an m× n matrix. Suppose that

A = [A1 A2 · · · An] =


a1

a2
...

am

 .
There are three spaces associated to the matrix A:

1. The Null Space of the matrix A is defined by N (A) = {x ∈ Rn : Ax = θ }.

2. The Column Space of A is defined by Cspace(A) = Span{A1,A2, . . . ,An }.

3. The Row Space of A is defined by Rspace(A) = Span{a1,a2, . . . ,am }.

Exercises 3.3

Pages 186 to 188 – Odds #1–49.
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3.4 Basis for Subspaces

In the previous section we were given a set of vectors S = {v1,v2, . . . ,vr} in a vector space Rn,
and we showed how to build the subspace W = Span(S) consisting of all linear combinations of
v1,v2, . . . ,vr, that is, all vectors of the form

x = a1v1 + a2v2 + · · ·+ arvr

where a1, a2, . . . ar are arbitrary scalars. In this section we will “go in the opposite direction;” that
is, we will be given a subspace W and will then be asked to find a set of vectors S which spans W ;
that is, so that Span(S) = W .

3.4.1 Spanning Sets

Definition 3.4.1. Let W be a subspace of Rn. A set of vectors S = {v1,v2, . . . ,vr} ⊆ W is said
to span W if Span(S) = W .

Consider the vector space Rn. A set of vectors S = {v1,v2, . . . ,vr} ⊆ Rn is said to span Rn if
Span(S) = Rn.

Example 1. Every vector x =

 x1
x2
x3

 in 3-space can be expressed as a linear combination of the

unit vectors e1 =

 1
0
0

, e2 =

 0
1
0

, and e3 =

 0
0
1

, that is,

x = x1e1 + x2e2 + x3e3.

Thus, the set of vectors S spans R3; that is, Span{e1, e2, e3} = R3.
The above set S is not the only linearly independent set of vectors which spans the vector space

R3. For example, let

v1 = e1, v2 =

 1
1
1

 , v3 = e3.

Then the set of vectors {v1,v2,v3} also spans R3; that is, Span{v1,v2,v3} = R3.

Problem 2 (Example 1 on page 190 of text). Does Span{u1,u2,u3} = R3 where

u1 =

 1
−1

0

 ,u2 =

 −2
3
1

 and u3 =

 1
2
3

?

Solution. A vector y ∈ R3 is in Span{u1,u2,u3} if and only if there are real numbers x1, x2, x3
such that

x1u1 + x2u2 + x2u2 = y, (3.3)

and the vector equation (3.3) has a solution if and only if Ax = y has a solution x, where A =

[u1 u2 u3]. We investigate the conditions on y =

 a
b
c

 which will imply that the system Ax = y



3.4. BASIS FOR SUBSPACES 67

is consistent. That is, we solve the system Ax = y by forming the augmented matrix and put it
into reduced echelon form to obtain

[A |y] =

 1 −2 1 a
−1 3 2 b

0 1 3 c

 reduced echelon form−−−−−−−−−−−−−−−−−−→

 1 0 0 10a+ 9b− 7c
0 1 0 4a+ 4b− 3c
0 0 1 −a− b+ c


and thus, we obtain the solution

x1 = 10a+ 9b− 7c

x2 = −4a+ 4b− 3c (3.4)

x3 = −a− b+ c.

So the system Ax = y will have a solution for any vector y ∈ R3. Hence, Span{u1,u2,u3} = R3.

For example,

 0
1
1

 in Span{u1,u2,u3} because letting a = 0, b = 1, c = 1 in (3.4) we obtain

x1 = 10(0) + 9(1)− 7(1) = 2

x2 = 4(0) + 4(1)− 3(1) = 1

x3 = −(0)− (1) + (1) = 0,

and these values will satisfy the vector equation 0
1
1

 = 2u1 + 1u2 + 0u3.

Problem 3 (Example 2 on page 191 of text). Does Span{u1,u2,u3} = R3 where

u1 =

 1
2
3

 ,u2 =

 −1
0
−7

 and u3 =

 2
7
0

?

Solution. A vector y ∈ R3 is in Span{u1,u2,u3} if and only if Ax = y has a solution x, where

A = [u1 u2 u3]. We investigate the conditions on y =

 a
b
c

 which will imply that the system

Ax = y is consistent. That is, we solve the system Ax = y by forming the augmented matrix and
put it into reduced echelon form to obtain

[A |y] =

 1 −1 2 a
2 0 7 b
3 −7 0 c

 reduced echelon form−−−−−−−−−−−−−−−−−−→

 1 0 7
2

b
2

0 1 3
2 −a+ b

2
0 0 0 −7a+ 2b+ c

 .
So the system Ax = y will have a solution if and only if −7a + 2b + c = 0. Thus, in particular, 0

1
1

 is not in Span{u1,u2,u3}. Hence, Span{u1,u2,u3} 6= R3.

Definition 3.4.2. A set of vectors S = {v1,v2, . . . ,vn} in a vector space W is called a basis for
W if, (1) S is linearly independent and (2) S spans W , that is, Span(S) = W .

Remark 3.4.3. A set of vectors S = {v1,v2, . . . ,vn} in a vector space Rk is called a basis for Rk
if, (1) S is linearly independent and (2) S spans Rk, that is, Span(S) = Rk.
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3.4.2 Uniqueness of Representation

Theorem 3.4.4. If S = {v1,v2, . . . ,vn} is a basis for a vector space V , then every vector y in V
can be expressed in the form y = c1v1 + c2v2 + · · ·+ cnvn in exactly one way.

Proof. Since S spans the vector space V , every vector y is a linear combination of the vectors
v1,v2, ...,vn, that is, y has the form y = c1v1 + c2v2 + · · ·+ cnvn. To show that there is only one
way to write y as a linear combination of the vectors in S, suppose that there is another way, say,
y = d1v1 + d2v2 + · · ·+ dnvn. Subtracting the first equation from the second yields

(c1 − d1)v1 + (c2 − d2)v2 + · · ·+ (cn − dn)vn = θ.

But the set S is linearly independent! Hence,

(c1 − d1) = 0, (c2 − d2) = 0, . . . , (cn − dn) = 0

and thus, c1 = d1, c2 = d2, . . . , cn = dn.

Problem 4. Consider the vector space R4 and the vectors

v1 =


0
1
1
1

 ,v2 =


1
0
1
1

v3 =


1
1
0
1

v4 =


1
1
1
0

 .

Show that S = {v1,v2,v3,v3} a basis for R4. Then, express the vector b =


3
6
−3

0

 as a linear

combination of the vectors in S.

Solution. A vector y ∈ R4 is in Span{v1,v2,v3, v4} if and only if Ax = y has a solution x, where

A = [v1 v2 v3 v4]. We investigate the conditions on y =


a
b
c
d

 which will imply that the system

Ax = y is consistent. That is, we solve the system Ax = y by forming the augmented matrix and
put it into reduced echelon to obtain

[A |y] =


0 1 1 1 a
1 0 1 1 b
1 1 0 1 c
1 1 1 0 e

 reduced echelon form−−−−−−−−−−−−−−−→


1 0 0 0

(
1
3b− 2

3a+ 1
3c+ 1

3d
)

0 1 0 0
(
1
3a− 2

3b+ 1
3c+ 1

3d
)

0 0 1 0
(
1
3a+ 1

3b− 2
3c+ 1

3d
)

0 0 0 1
(
1
3a+ 1

3b+ 1
3c− 2

3d
)
 . (3.5)

So the system Ax = y will always have a solution. Hence, Span{v1,v2,v3,v4} = R4. Thus, in
particular, b ∈ Span{v1,v2,v3,v4}. We must also show that S is linearly independent. To do this,
we must show that the vector equation

c1v1 + c2v2 + c3v3 + c4v4 = θ
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has only the trivial solution; that is, c =


c1
c2
c3
c4

 = θ. We apply the Linear Dependence

Algorithm; the matrix A = [v1 v2 v3 v4] is
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
To solve the homogeneous system Ac = θ we transform the augmented matrix into reduced echelon
form

[A |θ] =


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0

 reduced echelon form−−−−−−−−−−−−−−−−−−→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
Therefore, the only solution to the homogeneous system Ac = θ is the trivial solution c = θ.
Hence, the set of vectors S is linearly independent.

Finally, to express the vector b =


3
6
−3

0

 as a linear combination of the vectors in S, we must

solve for the scalars c1, c2, c3, c4 which satisfy the vector equation

c1v1 + c2v2 + c3v3 + c4v4 = b

We apply the Linear Combination Algorithm and solve the system Ac = b for c. We form the
augmented matrix [A |b] and put into reduced echelon form. We will get, from (3.5) above,

1 0 0 0
(
1
3b− 2

3a+ 1
3c+ 1

3d
)

0 1 0 0
(
1
3a− 2

3b+ 1
3c+ 1

3d
)

0 0 1 0
(
1
3a+ 1

3b− 2
3c+ 1

3d
)

0 0 0 1
(
1
3a+ 1

3b+ 1
3c− 2

3d
)


where a = 3, b = 6, c = −3, d = 0. Hence, c1 = 1
3(6)− 2

3(3) + 1
3(−3) + 1

3(0) = −1. Similarly, we get
c2 = −4, c3 = 5, c4 = 2. So,

b = −1v1 +−4v2 + 5v3 + 2v4.

3.4.3 Finding a Basis for the Null Space of a Matrix

The next example will give a method for finding a basis for the null space of a matrix A.

Problem 5 (Example 3 on page 192 of text). Find a basis for the null space of

A =

 1 1 3 1
2 1 5 4
1 2 4 −1

 .
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Solution. First notice, since A is a 3 × 4 matrix, that the null space of A is a subspace of R4.
Putting the augmented matrix [A |θ], into reduced echelon form we get

[B |θ] =

 1 0 2 3 0
0 1 1 −2 0
0 0 0 0 0

 .
Observe that x3 and x4 are free variables in the system Bx = θ. Solving the equivalent system of
equations Bx = θ, we obtain

x1 = −2x3 − 3x4

x2 = −x3 + 2x4

x3 = x3

x4 = x4.

Therefore, every solution to Ax = θ can be written in the vector form
x1
x2
x3
x4

 = x3


−2
−1

1
0

+ x4


−3

2
0
1

 .

We conclude that the vectors u1 =


−2
−1

1
0

 and u2 =


−3

2
0
1

 span the null space of A, that is,

Span{u1,u2} = N (A). Since the vectors u1 and u2 are linearly independent (see Theorem 1.7.7),
we see that {u1,u2} forms a basis for N (A).

A basis for the null space of an m × n matrix A is obtained as follows: First solve the homo-
geneous system Ax = θ by transforming the augmented matrix [A |θ] into reduced echelon form
to obtain [B |θ]. Now solve the equivalent system of equations Bx = θ in vector form (see section
1.5.3 starting on page 30). Each free variable will yield a basis vector for the null space of A. This
leads to the following theorem.

Theorem 3.4.5. Let A be an m×n matrix. Let [B |θ] be the result of transforming the augmented
matrix [A |θ] into reduced echelon form. Then the number of free variables in the system Bx = θ
equals the number of vectors in a basis for the null space of A.

3.4.4 Finding a Basis for the Row Space of a Matrix

Theorem 3.4.6. Let A be a nonzero matrix and suppose that B is the result of putting A into
reduced echelon form. Then the nonzero rows of B form a basis for the row space of A.

Proof. By Theorem 3.3.15 A and B have the same row space. It follows that the nonzero rows of
the matrix B span the row space of A. Since the nonzero rows of a matrix in reduced echelon form
are linearly independent, it follows that the nonzero rows form a basis for the row space of A.

Problem 6. Find a basis for the row space of the matrix

A =

 1 1 3 1
2 1 5 4
1 2 4 −1

 .



3.4. BASIS FOR SUBSPACES 71

Solution. After putting A into reduced echelon form we obtain the matrix

B =

 1 0 2 3
0 1 1 −2
0 0 0 0

 .
Let b1 = [1 0 2 3] and b2 = [0 1 1 −2] be the nonzero rows of B. (Clearly b1 and b2 are linearly
independent.) By Theorem 3.4.6 we have that {b1,b2} is a basis for the row space of A.

The idea used in Problem 6 inspires the following algorithm for obtaining a basis for the span
of any finite set of vectors. This algorithm is the minimal spanning algorithm on page 64.

Basis Algorithm. Given a set of vectors S = {A1,A2, . . . ,Ak} in Rn, to find a basis S′ for the
subspace W = Span(S), do the following:

Step 1. Form the matrix A = [A1 A2 · · · Ak].

Step 2. Form the matrix AT =


AT

1

AT
2
...

AT
k

.

Step 3. Transform the matrix AT into reduced echelon form BT =


BT

1

BT
2
...

BT
k

.

Step 4. Form the matrix B = [B1 B2 · · · Bk].

Step 5. The set S′ of the nonzero column vectors of B, is a basis for W = Span(S).

3.4.5 Finding a Basis for the Column Space of a Matrix

Theorem 3.4.7. Let v1,v2, . . . ,vk be vectors in Rn. Let A be the matrix

A =
[

v1 v2 · · · vk
]

and let c =


c1
c2
...
ck

 be a column matrix of scalars ci. Then c is a solution to the linear system

Ac = θ if and only if (c1, c2, . . . , ck) is a solution to the vector equation c1v1+c2v2+ · · ·+ckvk = θ.

Proof. See Theorem 1.7.2.
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Theorem 3.4.8. Let S = {v1,v2, . . . ,vk} be a set of vectors in Rn. Let A be the matrix A =[
v1 v2 · · · vk

]
. Transforming the matrix A into reduced row echelon form we obtain the

matrix B =
[

v′1 v′2 · · · v′k
]
. Let (c1, c2, . . . , ck) be a list scalars. Then (c1, c2, . . . , ck) is a

solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = θ

if and only if (c1, c2, . . . , ck) is a solution to the vector equation

c1v
′
1 + c2v

′
2 + · · ·+ ckv

′
k = θ.

Proof. Let c =


c1
c2
...
ck

 be the column matrix of given scalars ci. By Theorem 3.4.7, (c1, c2, . . . , ck)

is a solution to the vector equation

c1v1 + c2v2 + · · ·+ ckvk = θ

if and only if c is a solution to the homogeneous system Ac = θ. Since the matrices A and B
are row equivalent, it follows that the augmented matrices [A |θ] and [B |θ] are row equivalent.
Therefore, the systems Ac = θ and Bc = θ have exactly the same solutions (see Theorem 1.1.3).
Hence, c is a solution to the system Ac = θ if and only if c is a solution to the system Bc = θ. But
Theorem 3.4.7, again, implies that c is a solution to the system Bc = θ if and only if (c1, c2, . . . , ck)
is a solution to the vector equation

c1v
′
1 + c2v

′
2 + · · ·+ ckv

′
k = θ.

This completes the proof of Theorem 3.4.8.

We will now apply Theorem 3.4.8 in our solution to the next problem.

Problem 7 (See Example 6 on page 197 of text). Find a basis for the column space of the matrix

A =


1 1 1 1 2
1 2 4 0 5
2 1 −1 4 0
−1 1 5 −1 2


that consists of column vectors from the matrix A.

Solution. Let S = {v1,v2,v3,v4,v5} be the set of column vectors in the matrix A, that is,

v1 =


1
1
2
−1

 , v2 =


1
2
1
1

 , v3 =


1
4
−1

5

 , v4 =


1
0
4
−1

 , v5 =


2
5
0
2

 .
We will find a subset of S that is a basis for the space Cspace(A) = Span(S). Recall for the set of
vectors S that Span(S) consists of all linear combinations of the vectors in S, that is, all vectors y
of the form

y = c1v1 + c2v2 + c3v3 + c4v4 + c5v5
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where c1, . . . , c5 are scalars. Consider the matrix

A =
[

v1 v2 v3 v4 v5

]
=


1 1 1 1 2
1 2 4 0 5
2 1 −1 4 0
−1 1 5 −1 2

 .
Now transform this matrix into reduced row echelon form to obtain

B =
[

v′1 v′2 v′3 v′4 v′5
]

=


1 0 −2 0 1
0 1 3 0 2
0 0 0 1 −1
0 0 0 0 0

 .
Notice that the columns v′1, v′2, v′4 of the matrix B contain the leading 1’s. Clearly, the set of
vectors {v′1,v′2,v′4} is a linearly independent set. We shall now show that the set T = {v1,v2,v4}
is a basis for the space Span(S) by showing: (a) T is linearly independent and (b) T spans the
space Span(S).

(a) Show that T is linearly independent. It follows from Theorem 3.4.8 that the set T =
{v1,v2,v4} is also linearly independent. To see why, suppose that c1v1 + c2v2 + c4v4 = θ.
Then, Theorem 3.4.8 (letting c3 = c5 = 0) implies that c1v

′
1 + c2v

′
2 + c4v

′
4 = θ. But this

implies that c1 = c2 = c4 = 0 is the only solution. Hence, T is linearly independent.

(b) Show that T spans the space Span(S). Clearly,

v′3 = −2v′1 + 3v′2

and so,

−2v′1 + 3v′2 + −1v′3 = θ.

Theorem 3.4.8 (letting c4 = c5 = 0) implies that

−2v1 + 3v2 + −1v3 = θ

and so,

v3 = −2v1 + 3v2 (3.1)

Similarly, one can show that

v5 = v1 + 2v2 + −1v4. (3.2)

Now let y be a vector in Span(S), say,

y = c1v1 + c2v2 + c3v3 + c4v4 + c5v5. (3.3)

Using equations (3.1) and (3.2) to substitute for v3 and v5 in equation (3.3), and collecting
“like vectors,” we get

y = (c1 − 2c3 + c5)v1 + (c2 + 3c3 + 2c5)v2 + (c4 − c5)v4.

Therefore, y can be written as a linear combination of vectors v1,v2,v4 alone. Thus, T spans
Span(S).
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Therefore, T = {v1,v2,v4} is a basis for the column space of the matrix A, and T consists only of
column vectors from the matrix A.

The above solution to Problem 7 suggests the proof of the following two theorems.

Theorem 3.4.9. Let A be a nonzero matrix and suppose that B is the result of putting A into
reduced echelon form. Then let v′i, . . . ,v

′
j be the column vectors of the matrix B that contain the

leading 1’s. Then the corresponding column vectors vi, . . . ,vj of the matrix A form a basis for the
column space of A.

Theorem 3.4.10. Let S = {v1,v2, . . . ,vk} be a set of vectors in Rn and let W = Span(S). Then
there is a subset of S which forms a basis for the space W .

The idea used in Problem 7 also inspires the following algorithm for obtaining a basis for the
span of any finite set S of vectors that is a subset of the set S.

Subset Basis Algorithm. Given a set of vectors S = {v1,v2, . . . ,vm} in Rn to find a subset of
S which forms a basis for the space W = Span(S), do the following:

Step 1. Form the matrix A =
[

v1 v2 · · · vm
]
.

Step 2. Transform the matrix A =
[

v1 v2 · · · vm
]

into reduced row echelon form, obtaining
B =

[
v′1 v′2 · · · v′m

]
.

Step 3. Identify all the columns of B containing leading 1’s, say v′i1 ,v
′
i2
, . . . ,v′im .

Step 4. The subset T of S given by T = {vi1 ,vi2 , . . . ,vim} forms a basis for W = Span(S).

We now give another application of Theorem 3.4.8.

Problem 8 (Example 4 on page 193 of text). Let S = {v1,v2,v3}, where

v1 =

 1
1
1

 , v2 =

 2
3
1

 , v3 =

 3
5
1

 .
Show that S is a linearly dependent set, and find a subset of S that is a basis for the space
W = Span(S).

Solution. Form the matrix

A =
[

v1 v2 v3

]
=

 1 2 3
1 3 5
1 1 0

 .
Now transform this matrix into reduced row echelon form to obtain

B =
[

v′1 v′2 v′3
]

=

 1 0 −1
0 1 2
0 0 0

 .
Notice that the columns v′1, v′2 of the matrix B contain the leading 1’s. Clearly, the set of vectors
{v′1,v′2,v′3} is a linearly dependent set; because

v′1 − 2v′2 + v′3 = θ.
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So by Theorem 3.4.8,
v1 − 2v2 + v3 = θ.

Hence, the set S is linearly dependent. Finally, by the Subset Basis Algorithm, the set T = {v1,v2}
is a basis for Span(S). This completes the solution of Example 4 of text.

Remark 3.4.11. Let A be a matrix and let B be the result of transforming A into reduced echelon
form by performing row operations on the matrix A. We make the following observations:

1. Row operations preserve the row space of a matrix, that is, Rspace(A) = Rspace(B) (see
Theorem 3.3.15).

2. Row operations do not preserve the column space of a matrix, that is, Cspace(A) 6=
Cspace(B), in general.

Example 9. Let A be the matrix A =

 0 0
0 1
1 0

 and let B be the result of transforming A into

reduced echelon form obtaining B =

 1 0
0 1
0 0

. Now observe the following:

1. Row operations preserve the row space of the matrix A, that is, Rspace(A) = R2 =
Rspace(B).

2. Row operations do not preserve the column space of the matrix A, that is, Cspace(A) 6=
Cspace(B). To see this, note that

Cspace(A) = Span


 0

0
1

 ,
 0

1
0

 =


 0
y
z

 : y, z ∈ R


and that

Cspace(B) = Span


 1

0
0

 ,
 0

1
0

 =


 x
y
0

 : x, y ∈ R

 .

Thus, Cspace(A) 6= Cspace(B).

Exercises 3.4

Pages 200 to 202 of text – Odds #1–15; 21, 23, 24, 25, 26, 27, 33, 35.

3.5 Dimension

3.5.1 The Definition of Dimension

The following theorem states that the number of vectors in a linearly independent set is less than
or equal to the number of vectors in a spanning set.

Theorem 3.5.1. Let S = {v1,v2, . . . ,vn} be a spanning set for a vector space V , that is, let
Span(S) = V . If T = {y1,y2, . . . ,ym} is any set of linearly independent vectors in V , then m ≤ n.
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Proof. Because S spans V there are scalars aji such that

y1 = a11v1 + a21v2 + · · ·+ an1vn

y2 = a12v1 + a22v2 + · · ·+ an2vn (N)

...

ym = am1v1 + a2mv2 + · · ·+ anmvn.

We shall use “proof by contradiction.” Suppose, for a contradiction, that m > n. We shall then
demonstrate that this implies that T = {y1,y2, . . . ,ym} is linearly dependent (which is not the
case, and therefore, we must have that m ≤ n).

To demonstrate that the assumption “m > n” implies that T is linearly dependent, we must
show that there are scalars c1, c2, . . . , cm, not all zero, such that

c1y1 + c2y2 + · · ·+ cmym = θ.

To see that such scalars ci exist, multiply the first equation in (N) by c1, multiply the second
equation in (N) by c2, and do the same for the remaining equations. We thus obtain

c1y1 = c1a11v1 + c1a21v2 + · · ·+ c1an1vn

c2y2 = c2a12v1 + c2a22v2 + · · ·+ c2an2vn
...

cmym = cma1mv1 + cma2mv2 + · · ·+ cmanmvn.

Adding the left hand sides and the right hand sides together and collecting terms we get

c1y1+c2y2 + · · ·+ cmym

=(c1a11 + c2a12 + · · ·+ cma1m)v1 + (c1a21 + c2a22 + · · ·+ cma2m)v2 + · · ·
· · ·+ (c1an1 + c2an2 + · · ·+ cmanm)vn.

Therefore, if c1, c2, . . . , cm is a nontrivial solution to the homogeneous system

a11c1 + a12c2 + · · ·+ a1mcm = 0
a21c1 + a22c2 + · · ·+ a2mcm = 0

...
an1c1 + an2c2 + · · ·+ anmcm = 0,

(3.4)

then c1, c2, . . . , cm is a nontrivial solution to the vector equation c1y1 + c2y2 + · · · + cmym = θ.
But the number of unknowns m in the above homogeneous system is greater than the number of
equations n (because by assumption, m > n). Theorem 1.3.5 implies that a nontrivial solution
c1, c2, . . . , cm to the homogeneous system (3.4) exists. Hence, T is linearly dependent, which is a
contradiction. Therefore, m ≤ n.

The following corollary implies that the dimension of a vector space is unambiguous.

Corollary 3.5.2. If S = {v1,v2, . . . ,vn} and T = {y1,y2, . . . ,ym} are basis for a vector space V ,
then n = m.

Proof. Let S = {v1,v2, . . . ,vn} and T = {y1,y2, . . . ,ym} both be a basis for a vector space V .
Thus, S and T are linearly independent sets, Span(S) = V , and Span(T ) = V . Theorem 3.5.1 thus
implies that m ≤ n and n ≤ m. So, n = m.
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Thus, the notion of the dimension of a vector space is a mathematically precise notion.

Definition 3.5.3. The dimension of a non-zero vector space V , denoted by dim(V ), is the number
of vectors in a basis for V . If V = {θ}, then dim(V ) = 0.

Problem 1. Find a basis and the dimension of the following subspace W of R4 defined by the
follow algebraic specification

W =



x1
x2
x3
x4

 : x3 = x1 − x2 and x4 = x1 + x2

 .

Solution. Every vector x =


x1
x2
x3
x4

 in W has the form

x =


x1
x2
x3
x4

 =


x1
x2

x1 − x2
x1 + x2

 = x1


1
0
1
1

+ x2


0
1
−1

1

 .

So the vectors v1 =


1
0
1
1

 and v2 =


0
1
−1

1

 span W ; and one can easily check that {v1,v2} is

linearly independent by Theorem 1.7.7(zero-one law). Therefore, {v1,v2} is a basis for the space
W . So, W has dimension 2.

Problem 2 (See Example 2 on page 205 of text). Consider the subspace W = Span{u1,u2,u3,u4}
of R3 where

u1 =

 1
1
2

 , u2 =

 2
4
0

 , u3 =

 3
5
2

 , u4 =

 2
5
−2

 .
Find three different basis for W by applying the following 3 techniques:

(a) Find an algebraic specification for W and find a basis for W as in the above Problem 1.

(b) Apply the Subset Basis Algorithm on page 74 of these notes.

(c) Apply the Basis Algorithm on page 71 of these notes.

Solution. We solve (a), (b) and (c), in this order, below.

(a). A vector y ∈ R3 is in Span{u1,u2,u3,u4} if and only if Ax = y has a solution x, where

A = [u1 u2 u3 u4]. We investigate the conditions on y =

 y1
y2
y3

 which will imply that the system

Ax = y is consistent. That is, we solve the system Ax = y by forming the augmented matrix

[A |y] =

 1 2 3 2 y1
1 4 5 5 y2
2 0 2 −2 y3


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and put it into reduced echelon form to obtain 1 0 1 −1 2y1 − y2
0 1 1 3

2 −y1
2 + y2

2

0 0 0 0 −4y1 + 2y2 + y3


So the system Ax = y will have a solution if and only if −4y1 + 2y2 + y3 = 0; that is, when
y3 = 4y1 − 2y2. Hence,

W = Span{u1,u2,u3,u4} =


 y1
y2
y3

 : y3 = 4y1 − 2y2

 .

Thus, every vector y =

 y1
y2
y3

 in W has the form

y =

 y1
y2
y3

 =

 y1
y2

4y1 − 2y2

 = y1

 1
0
4

+ y2

 0
1
−2

 .

So the vectors v1 =

 1
0
4

 and v2 =

 0
1
−2

 span W ; and by Theorem 1.7.7(zero-one law) the set

{v1,v2} is linearly independent. So {v1,v2} is a basis for the space W . Thus, W has dimension 2.

(b). We now apply the Subset Basis Algorithm.

Step 1. A = [u1 u2 u3 u4] =

 1 2 3 2
1 4 5 5
2 0 2 −2

.

Step 2. Transform the matrix A into reduced row echelon form, obtaining

B = [u′1 u′2 u′3 u′4] =

 1 0 1 −1
0 1 1 3/2
0 0 0 0

.

Step 3. Identify all the columns of B containing leading 1’s, getting u′1,u
′
2.

Step 4. The subset T of S given by T = {u1,u2} forms a basis for W = Span(S).

(c). Now we apply the Basis Algorithm.

Step 1. Form the matrix A = [u1 u2 u3 u4] =

 1 2 3 2
1 4 5 5
2 0 2 −2

.

Step 2. Form the matrix AT =


1 1 2
2 4 0
3 4 2
2 5 −2

.
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Step 3. Transform the matrix AT into reduced echelon form BT =


1 0 4
0 1 −2
0 0 0
0 0 0

.

Step 4. Form the matrix B = [B1 B2 B3 B4] =

 1 0 0 0
0 1 0 0
4 −2 0 0

.

Step 5. Thus the set {B1,B2} consisting of the nonzero column vectors of B, is a basis for W .

3.5.2 Properties of an n–Dimensional Subspace

Theorem 3.5.4. Let W be a subspace of Rk with dimension dim(W ) = n. Let T be a set of
distinct vectors from W , say T = {y1,y2, . . . ,ym}. Then

1. If m > n, then T is linearly dependent.

2. If m < n, then Span(T ) 6= W .

3. If m = n and T is a linearly independent set, then T is a basis for W .

4. If m = n and Span(T ) = W , then T is a basis for W .

Proof. Let W be a subspace of Rk with dimension dim(W ) = n. Let T be a set of distinct
vectors from W , say T = {y1,y2, . . . ,ym}. Since dim(W ) = n, the subspace W has a basis
S = {v1,v2, . . . ,vn}. So, in particular, (N) S is linearly independent and Span(S) = W . We now
prove items 1 through 4.

1. Assume that m > n. Since m > n, Theorem 3.5.1 implies that T is linearly dependent.

2. Assume that m < n. We shall show that Span(T ) 6= W . Suppose, for a contradiction, that
Span(T ) = W . Since m < n, Theorem 3.5.1 implies that S is linearly independent, which
contradicts (N).

3. Assume that m = n and that T is a linearly independent set. We shall prove that T is a basis
for W . Since T is linearly independent, we just need to show that Span(T ) = W . Clearly,
Span(T ) ⊆ W . To show that W ⊆ Span(T ), let u ∈ W . Suppose, for a contradiction, that
u /∈ Span(T ). Consider the set of vectors U = {u,y1,y2, . . . ,ym}. Since u /∈ Span(T ), it
follows that U has m + 1 many vectors. Since m + 1 = n + 1 > n and Span(S) = W ,
Theorem 3.5.1 implies that U is a linearly dependent set of vectors. Thus, there are scalars
a, c1, c2, . . . , cm (not all zero) such that

au + c1y1 + c2y2 + · · ·+ cmym = θ. (3.5)

Because T is a linearly independent set, it follows that a 6= 0. Therefore, solving equation
(3.5) for u, we obtain

u = −c1
a

y1 −
c2
a

y2 − · · · −
cm
a

ym.

Hence, u ∈ Span(T ). This contradiction shows that Span(T ) = W and therefore, T is a basis
for W .
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4. Assume that m = n and Span(T ) = W . We shall prove that T is a basis for W . Since
Span(T ) = W , we just need to show that T is a linearly independent set. To do this, let
c1, c2, . . . , cm be scalars, and assume that

c1y1 + c2y2 + · · ·+ cmym = θ. (3.6)

First, we will show that c1 = 0. Suppose, for a contradiction, that c1 6= 0. Equation (3.6)
yields

y1 = −c2
c1

y2 − · · · −
cm
c1

ym. (3.7)

Let T ′ = {y2, . . . ,ym}. Thus, T ′ has m − 1 many vectors, and equation (3.7) implies that
Span(T ) = Span(T ′). Therefore, Span(T ′) = W . Since S = {v1,v2, . . . ,vn} is linearly
independent and Span(T ′) = W , Theorem 3.5.1 implies that n ≤ m− 1. As n = m, this is a
contradiction. Therefore, we must have that c1 = 0. A similar argument shows that c2 = 0,
c3 = 0, . . . , and cm = 0. So T is a linearly independent set. Thus, T is a basis for W .

This completes the proof of the theorem.

The vector space R5 has dimension 5. Using a basis {v1,v2,v3,v4,v5} for R5, one can construct
a 5-dimensional parallelepiped (box), as illustrated in the figure below:

Span = lR
5

V
1

V
2

V
3

V
4

V
5

•  !

A 5-dimensional parallelepiped (box) that resides in the vector space R5
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3.5.3 The Rank of a Matrix

Let A be an m× n matrix. Suppose that

A = [A1 A2 · · · An] =


a1

a2
...

am

 .
There are three spaces associated to the matrix A:

1. The Null Space of the matrix A is defined by N (A) = {x ∈ Rn : Ax = θ }.

2. The Column Space of A is defined by Cspace(A) = Span{A1,A2, . . . ,An }.

3. The Row Space of A is defined by Rspace(A) = Span{a1,a2, . . . ,am }.

Definition 3.5.5. Let A be an m × n matrix. We call the dimension of the subspace N (A) the
nullity of A, and we write nullity(A) = dim(N (A)).

Definition 3.5.6. Let A be an m × n matrix. We call the dimension of the subspace R(A) the
rank of A, and we write rank(A) = dim(R(A)).

By the proof of Theorem 3.3.7 we know that Cspace(A) = R(A), the range space of A. Thus, the
rank of a matrix A is also equal to the dimension of the column space of A. Hence, rank(A) =
dim(Cspace(A)).

Theorem 3.5.7. Let A be an m× n matrix. Then dim(Cspace(A)) = dim(Rspace(A)).

Proof. Transform the matrix A into reduced echelon form B. Theorem 3.4.6 implies that the
number of leading 1’s in the matrix B is the dimension of the row space of A. Theorem 3.4.9 also
implies that the number of leading 1’s in the matrix B is the dimension of the column space of A.
Therefore, dim(Cspace(A)) = dim(Rspace(A)).

Theorem 3.5.8. Let A be an m× n matrix. Then rank(A) + nullity(A) = n.

Proof. Transform the matrix A into reduced echelon form B. Let r be the number of leading
leading 1’s in the matrix B. Theorem 3.4.9 implies that r is the dimension of the column space of
A. Since Cspace(A) = R(A), it follows that r is the rank of the matrix A. Hence, r = rank(A).

Because r is the number of leading leading 1’s in the matrix B, we conclude that n − r is the
number of free variables in the system Bx = θ. Theorem 3.4.5 implies that n−r is the dimension of
the null space of A; that is, n−r = nullity(A). Therefore, rank(A)+nullity(A) = r+(n−r) = n.

Theorem 3.5.9. Let A be a square n×n matrix. Then A is non-singular if and only if rank(A) = n.

Proof. This follows from Theorem 1.7.11 and the fact that rank(A) = dim(Cspace(A)).

Exercises 3.5

Pages 212 to 213 of text – Odds #1–27.
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3.6 Orthogonal Bases for Subspaces

We first recall some definitions.

Definition. Let x =


x1
x2
...
xn

 and let y =


y1
y2
...
yn

 be vectors in Rn. The scalar product (or dot

product), denoted by x · y, is defined by

x · y = xTy = x1y1 + x2y2 + · · ·+ xnyn.

Definition. The norm (or length) of a vector x =


x1
x2
...
xn

 in Rn is defined by

‖x‖ =
√

x · x =
√
x21 + x22 + · · ·+ x2n.

Remark 3.6.1. A vector x has unit length if ‖x‖ = 1. Note that ‖x‖ = 1 if and only if x · x = 1.

Definition 3.6.2. Let x and y be vectors in Rn. We say that x and y are orthogonal if x ·y = 0.

Given a subspace W (of Rn) with a basis S = {x1,x2, . . . ,xk}, we want to construct a new
basis T = {y1,y2, . . . ,yk} for W with the nice property: T is orthogonal, that is, yi · yj = 0 for
each pair of distinct vectors yi, yj in T . The method used to construct T from S is called the
Gram-Schmidt Process.

Definition 3.6.3. A set of nonzero vectors S = {x1,x2, . . . ,xk} in Rn is said to be orthogonal if
any two distinct vectors xi, xj in S are orthogonal, that is, xi · xj = 0.

Definition 3.6.4. A set of vectors S = {x1,x2, . . . ,xk} in Rn is said to be orthonormal if S is
orthogonal and, in addition, each vector in S has unit length, that is, ‖xi‖ = 1 for each xi in S.

Definition 3.6.5. A basis S = {x1,x2, . . . ,xn} for a subspace W (of Rm) is said to be an orthog-
onal basis if S is orthogonal.

Definition 3.6.6. A basis S = {x1,x2, . . . ,xn} for for a subspace W (of Rm) is said to be an
orthonormal basis if S is orthonormal.

Theorem 3.6.7. Let S = {x1,x2, . . . ,xk} be an orthogonal set of nonzero vectors in Rn. Then S
is linearly independent.

Proof. Let S = {x1,x2, . . . ,xk} be an orthogonal set of nonzero vectors in Rn. Suppose that
c1, c2, . . . , ck are scalars satisfying

c1x1 + c2x2 + · · ·+ ckxk = θ.

We shall prove that c1 = c2 = · · · = ck = 0. First we prove that c1 = 0. We take the dot product
of x1 with both sides of the above equation and obtain

x1 · (c1x1 + c2x2 + · · ·+ ckxk) = x1 · θ.
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Thus, by Theorem 1.6.11 we obtain

c1(x1 · x1) + c2(x1 · x2) + · · ·+ ck(x1 · xk) = x1 · θ.

Since x1 · xi = 0 for all i 6= 1, we conclude that c1(x1 · x1) = 0 and since x1 · x1 6= 0 (by Theorem
1.6.11) we must have that c1 = 0. A similar argument will show that c2 = · · · = ck = 0. Therefore,
S is linearly independent.

3.6.1 Determining Coordinates

Theorem 3.6.8. Let S = {x1,x2, . . . ,xk} be an orthogonal basis for a subspace W of Rn. Then
each vector v in W can be expressed as a linear combination of the vectors in S as follows:

v =

(
v · x1

x1 · x1

)
x1 +

(
v · x2

x2 · x2

)
x2 + · · ·+

(
v · xk
xk · xk

)
xk.

Proof. Let S = {x1,x2, . . . ,xk} be an orthogonal basis of for W . Let v ∈W . Since S is a basis for
W there are scalars c1, c2, . . . , ck such that

v = c1x1 + c2x2 + · · ·+ ckxk.

We first show that c1 = v·x1
x1·x1

. We take the dot product of x1 with both sides of the above equation
and obtain

x1 · v = c1(x1 · x1) + c2(x1 · x2) + · · ·+ ck(x1 · xk).
Since x1 · xi = 0 for all i 6= 1, we conclude that x1 · v = c1(x1 · x1). Since x1 · x1 6= 0, we have that
c1 = v·x1

x1·x1
. A similar argument will show that c2 = v·x2

x2·x2
, . . . , ck = v·xk

xk·xk
.

3.6.2 Constructing an Orthogonal Basis

Gram-Schmidt Process. Given a basis S = {x1,x2, . . . ,xk} for a subspace W , to construct an
orthogonal basis T = {y1,y2, . . . ,yk} for W , do the following:

Step 1. Set y1 = x1.

Step 2. Compute the vectors y2,y3, . . . ,yi, . . . ,yk, in order, using the formula

yi = xi −
(

xi · y1

y1 · y1

)
y1 −

(
xi · y2

y2 · y2

)
y2 − · · · −

(
xi · yi−1

yi−1 · yi−1

)
yi−1.

The resulting set T = {y1,y2, . . . ,yk} is an orthogonal basis for W .

Remark 3.6.9. If you add the next step then you will construct an orthonormal basis.

Step 3. Transform each vector yi, constructed in Step 2, into a unit vector; that is, let

zi =
yi
‖yi‖

.

Then U = {z1, z2, . . . , zk} is an orthonormal basis for W .

Example 1. Use the Gram-Schmidt Process to find an orthogonal basis for the subspace W of R4

with basis {x1,x2,x3}, where the vectors x1 = [1, 1,−1, 0], x2 = [0, 2, 0, 1], x3 = [−1, 0, 0, 1] are
written as row vectors.
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Solution. Apply the steps in the Gram-Schmidt Process.

Step 1. Set y1 = x1 = [1, 1,−1, 0].

Step 2. Compute the vectors y2 and y3, in order, using the required formula

y2 = x2 −
(
x2·y1

y1·y1

)
y1

y2 = [0, 2, 0, 1]−
(

[0,2,0,1]·[1,1,−1,0]
[1,1,−1,0]·[1,1,−1,0]

)
[1, 1,−1, 0]

y2 = [0, 2, 0, 1]−
(
2
3

)
[1, 1,−1, 0]

y2 = [−2
3 ,

4
3 ,

2
3 , 1]

y3 = x3 −
(
x3·y1

y1·y1

)
y1 −

(
x3·y2

y2·y2

)
y2

y3 = [−1, 0, 0, 1]−
(
[−1,0,0,1]·[1,1,−1,0]
[1,1,−1,0]·[1,1,−1,0]

)
[1, 1,−1, 0]

−
(

[−1,0,0,1]·[− 2
3
, 4
3
, 2
3
,1]

[− 2
3
, 4
3
, 2
3
,1]·[− 2

3
, 4
3
, 2
3
,1]

)
[−2

3 ,
4
3 ,

2
3 , 1]

y3 = [−1, 0, 0, 1]−
(−1

3

)
[1, 1,−1, 0]−

(
5/3
33/9

)
[−2

3 ,
4
3 ,

2
3 , 1]

y3 = [−1, 0, 0, 1] + [13 ,
1
3 ,−1

3 , 0]− [−10
33 ,

20
33 ,

10
33 ,

5
11 ]

y3 = [− 4
11 ,− 3

11 ,− 7
11 ,

6
11 ].

The set T = {y1,y2,y3} is the desired orthogonal basis for W .

Exercises 3.6

Pages 224 to 225 of text – Odds #1-7, #13, 15.

3.7 Linear Transformations from Rn to Rm

We recall that a function F : A → B associates with each element z in the set A an element
F (z) in the set B. When F : A → B we say that F maps A into B. When we wish to indicate
the geometric nature of the sets A and B, we sometimes call F a transformation rather than a
function. Mathematically the concepts of “function” and “transformation” are identical. A set A
may be carried into a set B by a function, while a space A is transformed into a space B by a
transformation.

Our interest in this section centers on linear transformations from one vector space V into
another vector space W (sometimes W and V will be the same space).

Definition 3.7.1. If T : V →W is a function from a vector space V to the vector space W, then T
is called a linear transformation if, for all vectors x and y in V and for all scalars c, the following
hold:

(a) T (x + y) = T (x) + T (y)

(b) T (cx) = cT (x).

The vector space V is called the domain of T and the vector space W is called the co-domain of T.



3.7. LINEAR TRANSFORMATIONS FROM RN TO RM 85

Suppose that T : V → W is a linear transformation and that S = {v1,v2, . . . ,vn} is a basis
for V . Since any vector y in V can be expressed as a linear combination of the vectors in S, we
have that

y = c1v1 + c2v2 + · · ·+ cnvn

for some scalars c1, . . . , cn. By repeating properties (a) and (b) above, we obtain the equation

T (y) = c1T (v1) + c2T (v2) + · · ·+ cnT (vn).

Therefore, we can make the important observation that if you know how the linear transformation
T acts on a set of basis vectors for V , then you know how T acts on all the vectors in V .

Theorem 3.7.2. Suppose that T : V → W is a linear transformation and suppose that S =
{v1,v2, . . . ,vn} is a basis for V . For any vector y in V , the value T (y) is completely determined
by vectors in {T (v1), T (v2), . . . , T (vn)}.
Problem 1. Suppose T : R3 → R2 is a linear transformation and let S be the standard basis
S = {e1, e2, e3} where

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 .
Given that

T (e1) =

[
1
1

]
, T (e2) =

[
3
0

]
, T (e3) =

[
4
−7

]

determine T (x) when x =

 x1
x2
x3

.

Solution. Since
x = x1e1 + x2e2 + x3en

we see that
T (x) = x1T (e1) + x2T (e2) + x3T (e3).

Thus,

T (x) = x1

[
1
1

]
+ x2

[
3
0

]
+ x3

[
4
−7

]
=

[
x1 + 3x2 + 4x3

x1 − 7x3

]
.

Theorem 3.7.3. Let V be the vector space Rn and let A be an m × n matrix. Consider the
function T : Rn → Rm defined by T (x) = Ax. Then T is a linear transformation.

Proof. We show that T satisfies properties (a) and (b) of Definition 3.7.1. First we prove that (a)
holds:

T (x + y) = A(x + y) by definition of T

= Ax +Ay by distribution of matrix mult.

= T (x) + T (y) by definition of T .

Now we prove that (b) holds:

T (cx) = A(cx) by definition of T

= cAx by scalar mult. property

= cT (x) by definition of T .

This completes the proof.
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Theorem 3.7.4. If T : V →W is a linear transformation, then

1. T (θ) = θ

2. T (−x) = −T (x)

3. T (x− y) = T (x)− T (y)

Proof. Since 0θ = θ, it follows that T (0θ) = T (θ). Because T is linear, we must have that
0T (θ) = T (θ). Clearly, 0T (θ) = θ and therefore, T (θ) = θ. For item 2, let x ∈ V . We have that
−x = (−1)x. Thus, T (−x) = T ((−1)x) = (−1)T (x) = −T (x). Therefore, T (−x) = −T (x). The
proof of item 3 is similar.

3.7.1 Examples of Linear Transformations

Example 2. Let V be the vector space R2 and let A be the 2 × 2 matrix A =

[
0 2
1 0

]
. Define

the linear transformation L : R2 → R2 by L(x) = Ax. Let e1 =

[
1
0

]
and e2 =

[
0
1

]
be the unit

vectors in R2. Evaluating L(e1) and L(e2) we obtain

L(e1) =

[
1
0

]
L(e2) =

[
0
2

]
.

Consequently, the unit square S is “transformed” by L to L[S] as shown in Figure 3.8.

S

e1

e2

L(e2)

L(e1)

L[S]

Figure 3.8: L transforms the square S into the rectangle L[S]

Example 3. Let V be the vector space R2 and let B be the 2 × 2 matrix B =
√
2
2

[
1 1
1 −1

]
.

Define the linear transformation F : R2 → R2 by F (x) = Bx. Let e1 =

[
1
0

]
and e2 =

[
0
1

]
be

the unit vectors in R2. Evaluating F (e1) and F (e2) we obtain

F (e1) =

[ √
2
2√
2
2

]
F (e2) =

[ √
2
2

−
√
2
2

]
.

Consequently, the unit square S is “transformed” by F to F [S] as shown in Figure 3.9.

Example 4. Let V be the vector space R2 and let C be the 2 × 2 matrix C =

[
1 1
0 1

]
. Define

the linear transformation G : R2 → R2 by G(x) = Cx. Let e1 =

[
1
0

]
and e2 =

[
0
1

]
be the unit
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S

e1

e2

F (e1)

F (e2)

F [S]

Figure 3.9: F transforms the square S into the rotated square F [S]

vectors in R2. Evaluating G(e1) and G(e2) we obtain

G(e1) =

[
1
0

]
G(e2) =

[
1
1

]
.

Consequently, the unit square S is “transformed” by G to G[S] as shown in Figure 3.10.

S

e1

e2
G(e2)

G(e1)

G[S]

Figure 3.10: G transforms the square S into the parallelogram G[S]

Example 5. Let V be the vector space R3 and let A be the 3× 3 matrix

A =

 0 0 −2
1 2 1
1 0 3

 .
Let T : R3 → R3 be defined by T (x) = Ax. Letting x =

 x1
x2
x3

 and using matrix multiplication

we can get a “formula” for T :

T (x) = Ax =

 0 0 −2
1 2 1
1 0 3

 x1
x2
x3

 =

 −2x3
x1 + 2x2 + x3
x1 + 3x3

 .
Thus we obtain the formula

T

 x1
x2
x3

 =

 −2x3
x1 + 2x2 + x3
x1 + 3x3

 .
Conversely, given a formula (as in the above example) for a linear transformation, we can obtain

a matrix representation (namely A) such that T (x) = Ax.

Problem 6. Let T : R3 → R4 be the linear transformation defined by

T

 x1
x2
x3

 =


−2x3
x1 + x2

x1 + 2x2 + x3
x1 + 3x3

 .
Find a matrix A such that T (x) = Ax for all x ∈ R3.
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Solution. We shall find the desired matrix as follows:

T

 x1
x2
x3

 =


−2x3
x1 + x2

x1 + 2x2 + x3
x1 + 3x3

 = x1


0
1
1
1

+ x2


0
1
2
0

+ x3


−2
0
1
3



=


0 0 −2
1 1 0
1 2 1
1 0 3


 x1
x2
x3

 .

Thus, A =


0 0 −2
1 1 0
1 2 1
1 0 3

 is the desired matrix.

3.7.2 Finding the Matrix of a Linear Transformation

Theorem 3.7.5. Let T : Rn → Rm be a linear transformation and let e1, e2, . . . , en be the unit
vectors in Rn. Define the matrix A = [T (e1) T (e2) · · · T (en)]. Then T (x) = Ax for all x ∈ Rn.

Proof. Let x =


x1
x2
...
xn

. We will show that T (x) = Ax. Observe that x = x1e1 +x2e2 + · · ·+xnen.

Since T is a linear transformation, we obtain

T (x) = x1T (e1) + x2T (e2) + · · ·+ xnT (en) = [T (e1) T (e2) · · · T (en)]


x1
x2
...
xn

 = Ax

by Theorem 1.5.12, where A = [T (e1) T (e2) · · · T (en)].

Problem 7 (see problem 6 on page 87). Let T : R3 → R4 be the linear transformation defined by

T

 x1
x2
x3

 =


−2x3
x1 + x2

x1 + 2x2 + x3
x1 + 3x3

 .
Find a matrix A such that T (x) = Ax for all x ∈ R3.

Solution. Let e1, e2, e3 be the unit vectors in R3. Thus, by Theorem 3.7.5 the matrix A is

A = [T (e1) T (e2) T (e3)] =


0 0 −2
1 1 0
1 2 1
1 0 3

 .
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3.7.3 Coordinates with Respect to a Basis

Let V be a vector space and let B = {v1,v2, . . . ,vn} be a basis for V . By Theorem 3.4.4, we have
that every vector y in V there is a unique list of scalars c1, c2, . . . , cn such that

y = c1v1 + c2v2 + · · ·+ cnvn.

Thus, using the given order of the vectors inB, we can call the scalars c1, c2, . . . , cn the coordinates
of y with respect to the basis B, and call

[y]B =


c1
c2
...
cn


the coordinate vector of y with respect to the basis B. Using this coordinate system for V ,
we can represent any linear transformation T : V → V in terms of a matrix.

Theorem 3.7.6. Let T : V → V be a linear transformation and B = {v1,v2, . . . ,vn} be a basis for
V . Define the matrix A = [ [T (v1)]B [T (v2)]B · · · [T (vn)]B ]. Then [T (x)]B = A[x]B for all x ∈ V .

There is a slight generalization of Theorem 3.7.6.

Theorem 3.7.7. Let T : V → W be a linear transformation. Let B = {v1,v2, . . . ,vn} be a basis
for V and C = {w1,w2, . . . ,wm} be a basis for W . If A = [ [T (v1)]C [T (v2)]C · · · [T (vn)]C ], then
[T (x)]C = A[x]B for all x ∈ V .

3.7.4 Null Space and Range Space of a Linear Transformation

Definition 3.7.8. Let T : V →W be a linear transformation.

• The null space of T (or the kernel of T ), denoted by N (T ), is the set of all vectors x in V
such that T (x) = θ, that is,

N (T ) = {x ∈ V : T (x) = θ}.

• The range space of T , denoted by R(T ), is set of all vectors y in W such that T (x) = y for
some x ∈ V , that is,

R(T ) = {y ∈W : T (x) = y for some x ∈ V }.

Theorem 3.7.9. Let V be the vector space Rn and let A be an m×n matrix. Consider the linear
transformation T : Rn → Rm defined by T (x) = Ax. Then N (T ) = N (A) and R(T ) = R(A).

Definition 3.7.10. Let T : V → W be a linear transformation. The dimension of the subspace
N (T ) is called the nullity of T . The dimension of the subspace R(T ) is called the rank of T .

Problem 8. Consider the linear transformation T : R3 → R4 defined by T (x) = Ax where

A =


2 0 −2
1 1 0
1 2 1
1 0 −1

 .
Find a basis for the null space and range space of T . Then determine the nullity and rank of T .
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Solution. By Theorem 3.7.9 we just need to find the null space of the matrix A and find the range
of A. First we find the null space of A. Applying Gauss-Jordon reduction to the augmented matrix
[A |θ], we obtain the augmented matrix

[C |θ] =


1 0 −1 0
0 1 1 0
0 0 0 0
0 0 0 0

 .
Solving the equivalent system of equations Cx = θ, we obtain

x1 = x3

x2 = −x3
x3 = x3.

Therefore, every solution to Ax = θ can be written in the form x1
x2
x3

 =

 x3
−x3
x3

 = x3

 1
−1

1

 .

So the vector v1 =

 1
−1

1

 forms the basis of the null space of A. We conclude that v1 forms a

basis for the null space of T and that the nullity of T is 1.
Now we find a basis for the range of A. Since the column space of A equals the range space

of A, we just need to find a basis for the column space of A. To do this, we apply Theorem 3.4.9.
Transforming the matrix A into reduced echelon form we obtain

1 0 −1
0 1 1
0 0 0
0 0 0

 .

Theorem 3.4.9 implies that the vectors y1 =


2
1
1
1

 and y2 =


0
1
2
0

 form a basis for the range of

A. We conclude that y1, y2 form a basis for the range space of T and that the rank of T is 2.

3.7.5 One-to-One Linear Transformations

Definition 3.7.11. A linear transformation T : V → W is said to be one-to-one if the following
holds: For any vectors u and v in V , if T (u) = T (v) then u = v.

Theorem 3.7.12. A linear transformation T : V →W is one-to-one if and only if N (T ) = {θ}.

Proof. Let T : V →W be a linear transformation. Assume that T is one-to-one. We will prove that
N (T ) = {θ}. To do this, let x ∈ N (T ). Thus, T (x) = θ. Since T (θ) = θ by Theorem 3.7.4, we
conclude that T (x) = T (θ). Because T is one-to-one, we infer that x = θ. Therefore, N (T ) = {θ}.
For the converse, assume that N (T ) = {θ}. We shall prove that T is one-to-one. Let u and v be
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in V and assume that T (u) = T (v). Thus, T (u) − T (v) = θ. Because T is linear, we have that
T (u−v) = θ. Thus, u−v is in N (T ). Since N (T ) = {θ}, this implies that u−v = θ. Therefore,
u = v and thus, T is one-to-one.

Corollary 3.7.13. Let T : V →W be a linear transformation. Then T is one-to-one if and only if
for all x ∈ V , if T (x) = θ, then x = θ.

Lemma 3.7.14. Let T : V → W be a one-to-one linear transformation. If x1,x2, . . .xk are linear
independent vectors in V , then T (x1), T (x2), . . . T (xk) are linear independent vectors in W .

Proof. Let T : V →W be a one-to-one linear transformation. Assume that x1,x2, . . .xk are linear
independent vectors in V . Suppose that

c1T (x1) + c2T (x2) + · · · ckT (xk) = θ.

As T is a linear transformation, we conclude that

T (c1x1 + c2x2 + · · · ckxk) = θ.

Since T is one-to-one, Corollary 3.7.13 implies that

c1x1 + c2x2 + · · · ckxk = θ.

Because x1,x2, . . .xk are linearly independent, we infer that c1 = c2 = · · · ck = 0. Therefore, the
vectors T (x1), T (x2), . . . T (xk) are linear independent.

Theorem 3.7.15. Let T : V → W be a linear transformation such that dim(V ) = dim(W ). If T
is one-to-one, then T is onto W .

Proof. Let T : V → W be a linear transformation such that dim(V ) = dim(W ) = n. As-
sume that T is one-to-one. Let {x1,x2, . . . ,xn be a basis for V . By Lemma 3.7.14, we con-
clude that T (x1), T (x2), . . . T (xn) are linear independent vectors in W . Theorem 3.5.4(3) implies
that {T (x1), T (x2), . . . T (xn)} is a basis for W . To show that T is onto W , let y ∈ W . Since
{T (x1), T (x2), . . . T (xn)} is a basis for W , there are scalars c1, c2, . . . , cn such that

c1T (x1) + c2T (x2) + · · · cnT (xn) = y.

Because T is a linear transformation, we see that

T (c1x1 + c2x2 + · · · cnxn) = y.

Since c1x1 + c2x2 + · · · cnxn is in V , we conclude that T is onto W .

Exercises 3.7

Pages 239 to 241 of text – # 2, 3, 4, 8, 11, 14, 19, 22, 24, 25, 26, 28.



Chapter 4

The Eigenvalue Problem

A scalar λ is said to be an eigenvalue for square matrix A if there is a nonzero vector v such that
Av = λv. Such a vector v is called an eigenvector. The key method for finding eigenvalues is the
use of determinants. The determinate of a square matrix A is a real number, denoted by det(A),
that is obtained by an involved computation using the matrix A. Throughout this chapter we will
be working with square matrices.

4.2 Determinants

Definition 4.2.1. Let

A =

[
a11 a12
a21 a22

]
.

Then det(A) = a11a22 − a21a12.

Problem 1. Find the determinate of the 2× 2 matrix

A =

[
1 3
4 −1

]
.

Solution. The determinant is given by det(A) = 1 · (−1)− 3 · 4 = −13.

4.2.1 Minors and Cofactors

In order to define the determinate of n × n matrices when n > 2, we shall introduce a procedure
for deleting a particular row and a particular column from a matrix.

Definition 4.2.2. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann


be an n× n matrix. Let minor matrix Mij is the (n− 1)× (n− 1) matrix obtained by deleting
the i-th row and j-th column of A.

92
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Problem 2. Consider the 4× 4 matrix

A =


1 2 1 3
2 1 2 1
4 2 0 −1
−2 3 1 1

 .
Find the minor matrices M21, M22, M23 and M24.

Solution. M21 is obtained from A be deleting the 2nd row and the 1st column of A. So,

M21 =

 2 1 3
2 0 −1
3 1 1

 .
Similarly, M22 is obtained from A be deleting the 2nd row and the 2nd column of A. M23 is
obtained from A be deleting the 2nd row and the 3rd column of A. M24 is obtained from A be
deleting the 2nd row and the 4th column of A. Thus,

M22 =

 1 1 3
4 0 −1
−2 1 1

 , M23 =

 1 2 3
4 2 −1
−2 3 1

 , M24 =

 1 2 1
4 2 0
−2 3 1

 .
Definition 4.2.3. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann


be an n × n matrix. Let Mij be the (n − 1) × (n − 1) minor matrix obtained by deleting the i-th
row and j-th column of A. The cofactor Aij is defined to be

Aij = (−1)i+j det(Mij).

Problem 3. Let A =

 2 1 1
−1 1 2

1 2 3

. Evaluate A23.

Solution. Since A23 = (−1)2+3 det(M23), we first obtain the matrix M23 by deleting the 2nd row
and the 3rd column of A to obtain

M23 =

[
2 1
1 2

]
.

We see that det(M23) = 2 · 2− 1 · 1 = 3. Therefore, A23 = (−1)2+3 det(M23) = −3.

Definition 4.2.4. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann


be an n× n matrix. For any row Ri =

[
ai1 ai2 · · · ain

]
, the determinant of A is the number

det(A) defined by
det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin.
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Remark 4.2.5. No matter which row you select in Definition 4.2.4, you will always get the same
value for det(A). The above definition of the det(A) is referred to as the i-th row expansion. The
text defines det(A) using the method called the j-th column expansion (see Theorem 4.2.6 below).

Problem 4. Let A =

 2 1 1
−1 1 2

1 2 3

. Select a row and use Definition 4.2.4 to compute det(A).

Solution. We shall use the first row of A. Thus,

det(A) = a11A11 + a12A12 + a13A13

= 2 ·A11 + 1 ·A12 + 1 ·A13 (?)

where the cofactors A11, A12, A13 are computed as follows:

A11 = (−1)1+1 det

([
1 2
2 3

])
= (1)[1 · 3− 2 · 2] = −1

A12 = (−1)1+2 det

([
−1 2

1 3

])
= (−1)[(−1) · 3− 2 · 1] = 5

A13 = (−1)1+3 det

([
−1 1

1 2

])
= (1)[(−1) · 2− 1 · 1] = −3.

Therefore, by (?), det(A) = 2 · (−1) + 1 · 5 + 1 · (−3) = 0.

Problem 5. Let A =


1 2 −1 1
−1 0 2 −2

3 −1 1 1
2 0 −1 2

. Select a row and compute det(A).

Solution. We shall use the second row of A because it has a 0. Thus,

det(A) = a21A21 + a22A22 + a23A23 + a24A24

= −1 ·A21 + 0 ·A22 + 2 ·A23 − 2 ·A24

= −1 ·A21 + 2 ·A23 − 2 ·A24

= −1 · (−1)2+1 det(M21) + 2 · (−1)2+3 det(M23)− 2 · (−1)2+4 det(M24)

= det(M21)− 2 det(M23)− 2 det(M24)

= 5− 2(−8)− 2(9) = 3

where the values det(M21) = 5, det(M23) = −8 and det(M24) = 9 are computed as follows: To
compute det(M21) we first identify M21 and obtain

M21 =

 2 −1 1
−1 1 1

0 −1 2

 .
We now evaluate det(M21), using the 3rd row of M21, and get

det(M21) = (−1)(−1)3+2 det

([
2 1
−1 1

])
+ (2)(−1)3+3 det

([
2 −1
−1 1

])
= 1(2 · 1− (−1)(1)) + 2(2 · 1− (−1)(−1)) = 3 + 2 = 5.
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Because

M23 =

 1 2 1
3 −1 1
2 0 2

 ,
using the 3rd row in M23, we obtain

det(M23) = (2)(−1)3+1 det

([
2 1
−1 1

])
+ (2)(−1)3+3 det

([
1 2
3 −1

])
= 2(2 + 1) + 2(−1− 6)) = −8.

Finally, since

M24 =

 1 2 −1
3 −1 1
2 0 −1


we use the 3rd row in M24 to evaluate

det(M24) = (2)(−1)3+1 det

([
2 −1
−1 1

])
+ (−1)(−1)3+3 det

([
1 2
3 −1

])
= 2(2− 1) + (−1)(−1− 6)) = 9.

Theorem 4.2.6. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann


be an n× n matrix. Then

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin i-th row expansion

= a1jA1j + a2jA2j + · · ·+ anjAnj j-th column expansion.

Thus, one can compute the determinate of a square matrix by selecting a row, or a column, with
the most zeros for the evaluation of this determinate. Recall the following definition of a singular
matrix.

Definition 4.2.7. Let A be a square n × n matrix. The matrix A is nonsingular if the only
solution to Ax = θ is x = θ. We say that A singular if there is a non-trivial solution to Ax = θ,
that is, a solution x 6= θ.

The next two results are very important in linear algebra.

Theorem 4.2.8. Let A and B be n× n matrices. Then det(AB) = det(A) det(B).

Theorem 4.2.9. Let A be an n× n matrix. Then A is singular if and only if det(A) = 0.
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4.2.2 Triangular Matrices

Definition 4.2.10. A square n× n matrix A is upper triangular if all of the entries below the
main diagonal are 0; that is, if A has the form

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 0 · · · ann

 .
A square matrix A is lower triangular if all of the entries above the main diagonal are 0. A
matrix is said to be triangular if it is either upper or lower triangular.

Theorem 4.2.11. Let A be a triangular n × n matrix. Then det(A) is just the product of the
diagonal entries of the matrix A; that is, det(A) = a11a22 · · · ann.

Problem 6. Evaluate the determinate of each of the following triangular matrices:

A =


2 1 −3 5
0 −4 9 25
0 0 −2 1
0 0 0 1

 B =


1 0 0 0
4 2 0 0
−5 11 −2 0
10 7 9 3


Solution. det(A) = 2 · (−4) · (−2) · 1 = 16 and det(B) = 1 · 2 · (−2) · 3 = −12.

Problem 7. Let A =


2 0 0 1
0 1 0 0
0 6 2 0
0 1 0 3

. Select a row Ri and use Definition 4.2.4 to evaluate det(A).

Solution. We shall use the second row because it has a lot of 0’s. Thus,

det(A) = a21A21 + a22A22 + a23A23 + a24A24 = 1 ·A22.

So we just need to evaluate the cofactor A22, obtaining

A22 = (−1)2+2 det

 2 0 1
0 2 0
0 0 3

 = (1)[12] = 12.

Hence, det(A) = 12.

Exercises 4.2

Pages 288 to 289 of text – Odds #9-17.
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4.4 & 4.5 Eigenvalues, Eigenvectors, and Eigenspaces

Definition 4.4.12. If A is a square n × n matrix, then a nonzero vector x in Rn is called an
eigenvector of A if Ax is a scalar multiple of x, that is, Ax = λx for some scalar λ. The scalar λ is
called an eigenvalue of A, and the nonzero vector x is said to be an eigenvector corresponding to
the eigenvalue λ.

Remark 4.4.13. We make some observations about the definition of an eigenvalue and eigenvector.

1. Notice that x = θ is not allowed to be an eigenvector, even though Aθ = θ.

2. Notice that if x is a nonzero vector in the null space of A, that is Ax = θ, then x is an
eigenvector with eigenvalue (the number) 0, because Ax = θ = 0x.

3. Not all matrices have an eigenvector.

Definition 4.4.14. Let A is a square n×n matrix. Let λ be a fixed eigenvalue of A. The eigenspace
corresponding to λ is defined to be the set Eλ = {x ∈ Rn : Ax = λx}.

The reader will observe that if x is an eigenvector corresponding to λ, then any scalar multiple
cx is also an eigenvector. This is a special case of the next result.

Theorem 4.4.15. Let A is a square n× n matrix. Let λ be a fixed eigenvalue of A. Then Eλ is a
subspace of Rn.

Proof. Let A is a square n × n matrix. Let λ be a fixed eigenvalue of A. Note that θ ∈ Eλ since
Aθ = θ and thus, Aθ = λθ. So, to show that Eλ is a subspace it is sufficient to show that Eλ is
closed under addition and scalar multiplication. To do this let x and y be in Eλ and let c be a
scalar. Since x and y are in Eλ, it follows that

Ax = λx and Ay = λy. (4.1)

We must show that x + y is in Eλ; that is, we must show that A(x + y) = λ(x + y). To see this,
note that

A(x + y) = Ax +Ay by distribution of matrix mult.

= λx + λy by equations in (4.1) above

= λ(x + y) by distribution of scalar mult.

Hence, x + y ∈ Eλ. Now we must show that cx is in Eλ; that is, we must show that A(cx) = λ(cx)
given that x is in Eλ. To see this, note that

A(cx) = cAx by property of matrix mult.

= cλx by first equation in (4.1) above

= λcx since cλ = λc.

Hence, cx ∈ Eλ. Therefore, by Theorem 3.2.3, Eλ is a subspace of Rn.

Theorem 4.4.16. Let A is a square n × n matrix and let λ be a fixed eigenvalue of A. Then
Eλ = N (A− λI); that is, the eigenspace Eλ is the null space of the matrix A− λI.



98 CHAPTER 4. THE EIGENVALUE PROBLEM

Proof. We are given that λ is an eigenvalue of the square n× n matrix. Let x ∈ Rn. Suppose that
x is in eigenspace Eλ. Then Ax = λx and so,

Ax = λx

Ax = λIx because Ix = x where I is the identity matrix

Ax− λIx = θ subtracting λIx from both sides

(A− λI)x = θ distribution prop. of matrix mult.

We conclude that x is in the null space of the matrix A− λI. Similarly, if x is in the null space of
the matrix A− λI, then Ax = λx. Thus, x is in the eigenspace Eλ.

4.4.3 Finding Eigenvalues and Eigenvectors

From the proof of Theorem 4.4.16, we see that the equation Ax = λx is equivalent to the equation
(A− λI)x = θ. Hence, we now have the following theorem.

Theorem 4.4.17. Let A is a square n×n matrix and let λ be a scalar. The following are equivalent:

(a) There is a nonzero vector x such that Ax = λx.

(b) The matrix (A− λI) is singular.

(c) The scalar λ is a root to the equation det(A− λI) = 0.

Proof. We show that (a) implies (b), (b) implies (c), and (c) implies (a).

(a) ⇒ (b): Suppose that a nonzero vector x satisfies Ax = λx. Thus, (A − λI)x = θ. Since x is
nonzero, we conclude that matrix (A− λI) is singular.

(b)⇒ (c): Suppose that the matrix (A−λI) is singular. Theorem 4.2.9 implies that det(A−λI) = 0.

(c)⇒ (a): Suppose that det(A−λI) = 0. Theorem 4.2.9 implies that A−λI is singular. Therefore,
there is a nonzero vector x satisfying (A− λI)x = θ. Therefore, Ax = λx.

Our next corollary shows that to find an eigenvalue of a square matrix A, one just needs to find
the roots of an equation.

Corollary 4.4.18. Let A is a square n× n matrix and let λ be a scalar. Then λ is an eigenvalue
for A if and only if det(A− λI) = 0.

Definition 4.4.19. Let A is a square n× n matrix.

1. The polynomial p(λ) = det(A− λI) is called the characteristic polynomial of A.

2. The polynomial equation det(A− λI) = 0 is called the characteristic equation of A.

3. Suppose that r is a root of the characteristic equation det(A − λI) = 0. The algebraic
multiplicity of r is defined to be the the number of times that r occurs as root.

Problem 1. Find the characteristic polynomial p(λ) of the matrix

A =

 0 0 −2
1 2 1
1 0 3

 .
Find all the eigenvalues of A and their algebraic multiplicity.
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Solution. To find the eigenvalues of A, by Corollary 4.4.18, we must find the roots of the charac-
teristic equation det(A− λI) = 0. To do this, we first determine the matrix A− λI as follows:

A− λI =

 0 0 −2
1 2 1
1 0 3

−
 λ 0 0

0 λ 0
0 0 λ

 =

 −λ 0 −2
1 2− λ 1
1 0 3− λ

 .
To find the roots of the characteristic equation of A we now compute (using the first row) the

det(A− λI) = (−λ)(2− λ)(3− λ) + (−2)(−(2− λ)(1))
= (−λ)(2− λ)(3− λ) + 2(2− λ)
= (2− λ)[(−λ)(3− λ) + 2]
= (2− λ)[(λ2 − 3λ+ 2)]
= (2− λ)(λ− 2)(λ− 1)

Thus, the characteristic polynomial of A is p(λ) = (2 − λ)(λ − 2)(λ − 1). The eigenvalues of A
are the roots of the characteristic equation p(λ) = 0 which are λ = 2 and λ = 1. The algebraic
multiplicity of λ = 2 is two and algebraic multiplicity of λ = 1 is one.

Definition 4.4.20. Let A is a square n× n matrix.

1. Suppose that λ is an eigenvalue of A. The geometric multiplicity of λ is defined to be dim(Eλ).

2. If the algebraic multiplicity of any eigenvalue λ is different than the geometric multiplicity of
λ, then the matrix A is said to be defective.

Problem 2. Determine the dimension and a basis for all of the eigenspaces of the matrix

A =

 0 0 −2
1 2 1
1 0 3


given in Problem 1. Afterwards, determine whether or not the matrix A is defective.

Solution. The eigenvalues of A were derived in our solution of Problem 1, where we obtained λ = 2
and λ = 1. Theorem 4.4.16 implies that the eigenspace Eλ of A corresponding to the eigenvalue
λ = 2, is the null space of the matrix A− λI = A− 2I. So we must determine the dimension and
a basis for the null space of the matrix

A− 2I =

 −2 0 −2
1 0 1
1 0 1

 .
Putting this matrix into reduced echelon form we get the matrix

B =

 1 0 1
0 0 0
0 0 0

 .
We thus obtain the solution to the system (A− 2I)x = θ to be

x1 = −x3
x2 = x2

x3 = x3.
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Therefore, every solution to (A− 2I)x = θ can be written in the form

x =

 x1
x2
x3

 = x2

 0
1
0

+ x3

 −1
0
1

 .
Thus, the vectors y1 =

 0
1
0

 and y2 =

 −1
0
1

 form a basis for the eigenspace E2. Hence, the

dimension of the subspace E2 is two. Therefore, the geometric multiplicity of λ = 2 is two and is
the same as the algebraic multiplicity of λ = 2 (see Problem 1).

A basis and the dimension for the eigenspace corresponding to λ = 1 can be determined as
above. The reader should complete this problem by showing that the dimension of the eigenspace

corresponding to λ = 1 equals one, and that the vector

 −2
1
1

 forms a basis for this eigenspace.

Therefore, the geometric multiplicity of λ = 1 equals one and is the same as the algebraic multiplic-
ity of λ = 1. Since every eigenvalue has its geometric multiplicity equal to its algebraic multiplicity,
we conclude that the matrix A is not defective.

4.4.4 Distinct Eigenvalues

Theorem 4.4.21. Let A be an n × n matrix with eigenvectors x1,x2, . . . ,xk and corresponding
eigenvalues λ1, λ2, . . . , λk. Suppose that these eigenvalues are all distinct, that is, λi 6= λj when
i 6= j and 1 ≤ i, j ≤ k. Then the vectors x1,x2, . . . ,xk are linearly independent.

Proof. Let A be an n × n matrix. Suppose, for a contradiction, that the theorem is false for the
matrix A. Thus, there must be a smallest k for which the theorem is false. We will now work
with this k. So the matrix A possesses eigenvectors x1,x2, . . . ,xk, with corresponding distinct
eigenvalues λ1, λ2, . . . , λk, such that x1,x2, . . . ,xk are linearly dependent. First we observe that
the eigenvector x1 is linearly independent. To see this, suppose that cx1 = θ. Since x1 6= θ
(because it is an eigenvector), it follows that c = 0. Thus, k > 1. Since k is the smallest for which
the theorem is false, it follows that the eigenvectors x1,x2, . . . ,xk−1 are linearly independent.

Since the vectors x1,x2, . . . ,xk−1,xk are linearly dependent, there are scalars c1, c2, . . . , ck−1, ck,
which are not all 0, such that

c1x1 + c2x2 + · · ·+ ck−1xk−1 + ckxk = θ. (4.2)

We will now show that ck 6= 0. If ck = 0 then we would obtain, from (4.2), the equation

c1x1 + c2x2 + · · ·+ ck−1xk−1 = θ. (4.3)

Because x1,x2, . . . ,xk−1 are linearly independent, we would be able to conclude from (4.3) that all
of the scalars c1, c2, . . . , ck−1, ck must be 0, which is not the case. Thus, we must have that ck 6= 0.

Since ck 6= 0 and xk 6= θ, equation (4.2) implies that there is a least one scalar c` such that
c` 6= 0 where 1 ≤ ` ≤ k − 1. Multiplying both sides of (4.2) on the left by the matrix A, we get

c1Ax1 + c2Ax2 + · · ·+ ck−1Axk−1 + ckAxk = Aθ.

Since Axi = λxi for each i = 1, 2, . . . k, we conclude that

c1λ1x1 + c2λ2x2 + · · ·+ ck−1λk−1xk−1 + ckλkxk = θ. (4.4)
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Multiplying both sides of (4.2) by the scalar λk, we get

c1λkx1 + c2λkx2 + · · ·+ ck−1λkxk−1 + ckλkxk = θ. (4.5)

Subtracting equation (4.4) from equation (4.5), we see that

c1(λk − λ1)x1 + c2(λk − λ2)x2 + · · ·+ ck−1(λk − λk−1)xk−1 = θ.

Because x1,x2, . . . ,xk−1 are linearly independent, we have that

c1(λk − λ1) = 0, c2(λk − λ2) = 0, . . . , ck−1(λk − λk−1) = 0.

Hence, in particular, c`(λk − λ`) = 0. We noted above that c` 6= 0. Thus λk − λ` = 0 and so,
λk = λ`. We conclude that not all of the given eigenvalues are distinct. This contradiction shows
that the theorem is true.

Corollary 4.4.22. Let A be an n×n matrix. If A has n distinct eigenvalues, then A has n linearly
independent eigenvectors.

Corollary 4.4.23. Let A be an n × n matrix with eigenvectors x1,x2, . . . ,xk and corresponding
eigenvalues λ1, λ2, . . . , λk. If these eigenvalues are all distinct, then x1 + x2 + · · ·+ xk 6= θ.

Exercises 4.4 & 4.5

Page 305 of text – Odds #1-11. Page 314 of text – Odds #1-17.

4.7 Diagonalization

Definition 4.7.1. A square n×n matrix D is a diagonal matrix if all of the entries off the main
diagonal are 0; that is, if D has the form

D =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

...
0 0 0 · · · dn

 .

Example 3. The following square matrices are diagonal matrices:

A =


2 0 0 0
0 7 0 0
0 0 −5 0
0 0 0 1

 B =


1 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 3


Theorem 4.7.2. Let D be the diagonal matrix

D =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

...
0 0 0 · · · dn

 .
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Then

Dk =


dk1 0 0 · · · 0
0 dk2 0 · · · 0
0 0 dk3 · · · 0
...

...
...

...
0 0 0 · · · dkn


for all k ≥ 1.

Theorem 4.7.3. Let A be an n×n matrix. Suppose that A = SDS−1 were D is an n×n diagonal
matrix D and S is a nonsingular n× n matrix. Then Ak = SDkS−1 for all k ≥ 1.

Proof. Exercise, using mathematical induction.

Example 4. Whenever A = [x1 x2 · · · xn] is an n× n matrix with columns x1,x2, . . . ,xn, then
Aei = xi whenever ei is the i-th unit vector in Rn. For example, let A be the 3× 3 matrix

A =

 3 1 −2
−1 2 1

1 0 3

 = [x1 x2 x3]

and let e1 =

 1
0
0

, e2 =

 0
1
0

, and e3 =

 0
0
1

 be the unit vectors in R3. Then

Ae1 =

 3 1 −2
−1 2 1

1 0 3

 1
0
0

 =

 3
−1

1

 = x1

Ae2 =

 3 1 −2
−1 2 1

1 0 3

 0
1
0

 =

 1
2
0

 = x2

Ae3 =

 3 1 −2
−1 2 1

1 0 3

 0
0
1

 =

 −2
1
3

 = x3.

Similarly, whenever A = [x1 x2 · · · xn] is an n × n matrix with columns x1,x2, . . . ,xn, then
A(λei) = λxi whenever λ is a scalar and ei is the i-th unit vector in Rn.

Definition 4.7.4. A square n × n matrix A is said to be diagonalizable if there is an n × n
diagonal matrix D such that S−1AS = D for some nonsingular n× n matrix S.

Theorem 4.7.5. A square n× n matrix A is diagonalizable if and only if the matrix A possesses
n linearly independent eigenvectors.

Proof. Let A be a square n× n matrix.

(⇒). We must prove that if A is diagonalizable, then A possesses n linearly independent eigenvec-
tors. So, assume that A is diagonalizable. Thus, there is an n × n diagonal matrix D such that
S−1AS = D for some nonsingular n × n matrix S. Let S = [x1 x2 · · · xn] and suppose that D
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has the form

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

 .
Since the matrix S is nonsingular, Theorem 1.7.11 implies that the vectors x1,x2, . . . ,xn are linearly
independent. We shall prove that Axi = λixi for each i = 1, 2, . . . , n. So, let i be such a natural
number. Since S−1AS = D, it follows that AS = SD. Thus, (AS)ei = (SD)ei where ei is the i-th
unit vector in Rn. Thus, A(Sei) = S(Dei). Since Sei = xi and Dei = λiei, we conclude that

Axi = Sλiei = λiSei = λixi.

Therefore, Axi = λixi and thus, each xi is an eigenvector for A. We can now conclude that A
possesses n linearly independent eigenvectors.

(⇐). Now suppose that A possesses n linearly independent eigenvectors. We shall prove that A is
diagonalizable. Let x1,x2, . . . ,xn be n linearly independent eigenvectors for the matrix A and let
λ1, λ2, . . . , λn be their corresponding eigenvalues. Hence Axi = λixi for i = 1, 2, . . . , n. Let

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

 (4.6)

and let S = [x1 x2 · · · xn]. Since x1,x2, . . . ,xn are linearly independent, Theorem 1.7.11 implies
that the matrix S is nonsingular. Thus, S−1 exists by Theorem 1.9.7. We shall now prove that
AS = SD as follows:

AS = A [x1 x2 · · · xn] = [Ax1 Ax2 · · · Axn]

= [λ1x1 λ2x2 · · · λnxn]

= [x1 x2 · · · xn]


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 0 · · · λn

 = SD.

We conclude that AS = SD and hence, S−1AS = D. Therefore, A is diagonalizable.

Remark 4.7.6. Suppose that A is an n × n diagonalizable matrix. The proof of Theorem 4.7.5
gives a procedure for diagonalizing A. First find n linearly independent eigenvectors x1,x2, . . . ,xn
for the matrix A, with corresponding eigenvalues λ1, λ2, . . . , λn. Let S = [x1 x2 · · · xn]. Then
S−1AS = D where D is as (4.6) above.

Problem 5. Consider the 3× 3 matrix

A =

 0 0 −2
1 2 1
1 0 3

 .
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Show that A is diagonalizable and find a 3 × 3 matrix S so that S−1AS = D were D is a 3 × 3
diagonal matrix.

Solution. The matrix A was used in Problem 2 on page 99. In our solution to this Problem 2, we
obtain the following three eigenvectors for the matrix A:

x1 =

 0
1
0

 , x2 =

 −1
0
1

 , x3 =

 −2
1
1


with corresponding eigenvalues λ1 = 2, λ2 = 2, λ3 = 1. By applying the Linear Dependence
Algorithm on page 40, one can show that the vectors x1,x2,x3 are linearly independent. Thus,
Theorem 4.7.5 implies that A is diagonalizable. Let

S = [x1 x2 x3] =

 0 −1 −2
1 0 1
0 1 1

 and D =

 2 0 0
0 2 0
0 0 1

 .
Thus, by the proof of Theorem 4.7.5, we have that S−1AS = D.

Given a finite set B of vectors, we let |B| denote the number of vectors in the set B.

Theorem 4.7.7. Let A be a square n × n matrix. Suppose that A has k distinct eigenvalues
λ1, λ2 . . . , λk where k < n. For each natural number i ≤ k, let Bλi be a basis for Eλi . Then the
set of vectors U = Bλ1 ∪Bλ2 ∪ · · · ∪Bλk is a linearly independent set of vectors. Hence, if |U | = n,
then the matrix A is diagonalizable.

Proof. Let A be a square n × n matrix. Suppose that A has k distinct eigenvalues λ1, λ2 . . . , λk
where k < n. For each i ≤ k, let Bλi = {xi,1, . . . ,xi,ji} be a basis for the eigenspace Eλi . We note
that (N) a nonzero linear combination of the vectors in Bλi is also an eigenvector with eigenvalue λi.
Moreover, since the eigenvalues are distinct, it follows that Bλi ∩ Bλj = ∅ whenever i 6= j. Let
U = Bλ1 ∪Bλ2 ∪ · · · ∪Bλk . To show that U is a linearly independent set of vectors, suppose that

(c1,1x1,1 + · · ·+ c1,j1x1,j1) + (c2,1x2,1 + · · ·+ c2,j2x2,j2) + · · ·+ (ck,1xk,1 + · · ·+ ck,jkxk,jk) = θ.

Corollary 4.4.23 and (N) imply that each of the above parenthetical linear combinations must be
equal to θ. Since each Bλi is a linearly independent set of vectors, we conclude that

c1,1 = · · · = c1,j1 = c2,1 = · · · = c2,j2 = · · · · · · = ck,1 = · · · = ck,jk = 0.

Thus, U is a linearly independent set of vectors. Hence, if |U | = n, then Theorem 4.7.5 implies
that the matrix A is diagonalizable.

Corollary 4.7.8. Let A be an n×n matrix. If the sum of the dimensions of all the eigenspaces of
A is equal to n, then A is diagonalizable.

Exercises 4.7
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