Final Problems in Real Analysis \& Abstract Algebra MAT 491-Spring 2019

1 Real Analysis Problems

Definition 1. We shall say that $f: D \rightarrow \mathbb{R}$ preserves convergent sequences if for all convergent sequences $\left\langle x_{n}\right\rangle$ with $x_{n} \in D$ for all $n \geq 1$, we have that $\left\langle f\left(x_{n}\right)\right\rangle$ also converges.

Definition 2 (Partition of an Interval). Let $[c, d]$ be an interval.

- A finite set $P=\left\{x_{i}: 0 \leq i \leq n\right\}=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ of points in $[a, b]$ is called a partition of $[a, b]$ provided that $c=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=d$.
- If P and P^{*} are two partitions of $[c, d]$ with $P \subseteq P^{*}$, then P^{*} is called a refinement of P.

Remark. Given two partitions P and Q of $[c, d]$, it follows that $P \cup Q$ is a partition of $[c, d]$ and so, $P \cup Q$ is a refinement of both P and Q.
Definition 3. Let $f:[a, b] \rightarrow \mathbb{R}$ and $[c, d]$ be a closed subinterval of $[a, b]$. Let $P=\left\{x_{i}: 0 \leq i \leq n\right\}$ be a partition of $[c, d]$. The P-variation of f over $[c, d]$, denoted by $P_{v}(f,[c, d])$, is defined to be the real number

$$
P_{v}(f,[c, d])=\sum_{1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

Definition 4. Let $f:[a, b] \rightarrow \mathbb{R}$ and let $[c, d]$ be a closed subinterval of $[a, b]$. The variation of f over $[c, d]$, denoted by $V(f,[c, d])$, is defined by

$$
V(f,[c, d])=\sup \left\{P_{v}(f,[c, d]): P \text { is a partition of }[c, d]\right\}
$$

and the function f is said to be of bounded variation on $[c, d]$ if $V(f,[c, d])$ is a real number.
Definition 5. Let $f: I \rightarrow \mathbb{R}$, where I is an interval. Then f is absolutely continuous on I if for every $\varepsilon>0$, there is a $\delta>0$ such that for all sets $S=\left\{\left[c_{i}, d_{i}\right]: 1 \leq i \leq n\right\}$ of non-overlapping sub-intervals of I,

$$
\text { if } \sum_{1}^{n}\left|d_{i}-c_{i}\right|<\delta, \text { then } \sum_{1}^{n}\left|f\left(d_{i}\right)-f\left(c_{i}\right)\right|<\varepsilon
$$

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and let $a \in \mathbb{R}$. Prove that there exists a sequence $\left\langle c_{n}\right\rangle$ such that $c_{n} \neq a$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f^{\prime}\left(c_{n}\right)=f^{\prime}(a)$.
2. (Henderson) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded, continuous and strictly increasing. Prove that f is uniformly continuous.
3. (Miller) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on the closed interval $[a, b]$ where $f(a)<$ $0<f(b)$. Let $S=\{x \in[a, b]: f(x)<0\}$, and let $u=\sup (S)$. Prove that $f(u)=0$.
4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function and there is no $x \in \mathbb{R}$ such that $f(x)=0=f^{\prime}(x)$. Let $Z_{f}=\{x \in \mathbb{R}: f(x)=0\}$ be the zero set of f. Prove that Z_{f} has no accumulation points.
5. Suppose $\lim _{n \rightarrow \infty} s_{n}=c$ and let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be one-to-one where $\mathbb{N}=\{1,2,3,4,5, \ldots\}$ is the set of natural numbers. Prove that $\lim _{n \rightarrow \infty} s_{\sigma(n)}=c$.
6. Let $a<x_{0}<b$ and suppose that $f:(a, b) \rightarrow \mathbb{R}$ is differentiable. Prove the following:
(a) For all $\varepsilon>0$ and $\delta>0$ there is a $c \in(a, b)$ so that $0<\left|c-x_{0}\right|<\delta$ and $\left|f^{\prime}(c)-f^{\prime}\left(x_{0}\right)\right|<\varepsilon$.
(b) If $\lim _{x \rightarrow x_{0}} f^{\prime}(x)=L$, then $f^{\prime}\left(x_{0}\right)=L$. [Hint: Prove that $\left|f^{\prime}\left(x_{0}\right)-L\right|<\varepsilon$ for all $\varepsilon>0$.]
7. Let $a<b$. Suppose that $F:[a, b] \rightarrow \mathbb{R}$ and $f:[a, b] \rightarrow \mathbb{R}$ are continuous. If $F^{\prime}(x)=f(x)$ for all x in $(a, b]$, then $F^{\prime}(a)=f(a)$. (The derivative at an endpoint is the appropriate one-sided limit of the difference quotient.)
8. Let $f:(0,1] \rightarrow \mathbb{R}$ be differentiable on $(0,1]$. Suppose that $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in(0,1]$. Define a sequence $\left\langle t_{n}\right\rangle$ by $t_{n}=f\left(\frac{1}{n}\right)$ for all $n \geq 1$. Prove that $\left\langle t_{n}\right\rangle$ converges.
9. Suppose that $f: D \rightarrow \mathbb{R}$ preserves convergent sequences. Prove that f is continuous.
10. Suppose that $f: D \rightarrow \mathbb{R}$ preserves convergent sequences. Prove that if D is bounded, then f is uniformly continuous.
11. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function that is differentiable on (a, b). Suppose that $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded. Prove that f is of bounded variation on $[a, b]$.
12. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function that is differentiable on (a, b). Suppose that $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded. Prove that f is absolutely continuous on $[a, b]$.
13. Let I be an interval. Suppose that $f: I \rightarrow \mathbb{R}$ is absolutely continuous. Prove that $f: I \rightarrow \mathbb{R}$ is uniformly continuous.
14. Let I be an interval. Suppose that $f: I \rightarrow \mathbb{R}$ is absolutely continuous. Prove that $|f|$ is absolutely continuous.
15. Let I be an interval. Suppose that $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ are absolutely continuous. Prove that $f+g$ is absolutely continuous.
16. (Wood) Let $[a, b]$ be an interval. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are of bounded variation. Prove that $f+g$ is of bounded variation.
17. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $\left|f^{\prime}(x)\right|<1$ for all $x \in \mathbb{R}$. Prove that f has at most one fixed point. [Recall that c is a fixed point of f when $f(c)=c$.]
18. Let $a<b, I=[a, b)$, and $f: I \rightarrow \mathbb{R}$ be differentiable on I with $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in I$. Suppose that $\left\langle x_{i}\right\rangle$ is a sequence of distinct points in I that converges to b. Prove that sequence $\left\langle f\left(x_{i}\right)\right\rangle$ converges.

2 Group Theory Problems

1. (Downing) Let G be a group and let $Z(G)$ be the center of G. Let $a, b \in G$ be a distinct elements. Define the automorphism $\varphi: G \rightarrow G$ by

$$
\varphi(x)=a^{-1} x a, \text { for all } x \in G .
$$

Now, define the automorphism $\sigma: G \rightarrow G$ by

$$
\sigma(x)=b^{-1} x b, \text { for all } x \in G .
$$

Prove that $\varphi=\sigma$ if and only if $b a^{-1} \in Z(G)$.
2. (Cretacci) Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism from the group G to the group G^{\prime}. Suppose that N^{\prime} is a normal subgroup of G^{\prime}. Define $\varphi^{-1}\left[N^{\prime}\right] \subseteq G$ by

$$
\varphi^{-1}\left[N^{\prime}\right]=\left\{x \in G: \varphi(x) \in N^{\prime}\right\}
$$

(a) Prove that $\varphi^{-1}\left[N^{\prime}\right]$ is a subgroup of G.
(b) Prove that $\varphi^{-1}\left[N^{\prime}\right]$ is a normal subgroup of G.
3. (Williams) Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism where G and G^{\prime} are groups. Let $K=\operatorname{ker}(\varphi)$. Let H be a subgroup of G. Prove that $\varphi^{-1}[\varphi[H]]=H K$ where $H K=\{h k: h \in H$ and $k \in$ $K\}$.
4. Let $n>0$ be a fixed natural number, G be a group and let e be the identity element in G. Define $H=\left\{g \in G: g^{n}=e\right\}$. Prove that if H is a subgroup of G, then H is normal in G.
5. (Nicholas) Let G be a group and let N be a normal subgroup of G. Suppose that the quotient group G / N has order m. Prove that $a^{m} \in N$ for all $a \in G$.
6. Assume that the group G has a subgroup of order n, a fixed natural number. Let $\left\{H_{i}: i \in I\right\}$ be an indexed set consisting of all the subgroups of G of order n. Given that $\bigcap_{i \in I} H_{i}$ is a subgroup of G. Prove that $\bigcap_{i \in I} H_{i}$ is a normal subgroup of G.
7. (Krupa) Let G be a group and let N and K be normal subgroups of G such that $N \cap K=\{e\}$, where e is the identity element in G. Let $h \in H$ and $k \in K$. Prove that $h k=k h$.
8. Let $\left\{N_{i}: i \in I\right\}$ be an indexed set consisting of normal subgroups of a group G.
(a) Prove that $\bigcap_{i \in I} N_{i}$ is a subgroup of G.
(b) Prove that $\bigcap_{i \in I} N_{i}$ is a normal subgroup of G.
9. (Edan) Let G be a group and let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism where G^{\prime} is an abelian group. Prove that if K is a subgroup of G such that $\operatorname{ker}(\varphi) \subseteq K$, then K is normal in G.

