Final Problems in Real Analysis & Abstract Algebra MAT 491–Spring 2019

1 Real Analysis Problems

Definition 1. We shall say that $f: D \to \mathbb{R}$ preserves convergent sequences if for all convergent sequences $\langle x_n \rangle$ with $x_n \in D$ for all $n \ge 1$, we have that $\langle f(x_n) \rangle$ also converges.

Definition 2 (Partition of an Interval). Let [c, d] be an interval.

- A finite set $P = \{x_i : 0 \le i \le n\} = \{x_0, x_1, x_2, \dots, x_n\}$ of points in [a, b] is called a **partition** of [a, b] provided that $c = x_0 < x_1 < x_2 < \dots < x_n = d$.
- If P and P^* are two partitions of [c, d] with $P \subseteq P^*$, then P^* is called a **refinement** of P.

Remark. Given two partitions P and Q of [c, d], it follows that $P \cup Q$ is a partition of [c, d] and so, $P \cup Q$ is a refinement of both P and Q.

Definition 3. Let $f: [a, b] \to \mathbb{R}$ and [c, d] be a closed subinterval of [a, b]. Let $P = \{x_i : 0 \le i \le n\}$ be a partition of [c, d]. The *P*-variation of f over [c, d], denoted by $P_v(f, [c, d])$, is defined to be the real number

$$P_v(f, [c, d]) = \sum_{1}^{n} |f(x_i) - f(x_{i-1})|.$$

Definition 4. Let $f: [a, b] \to \mathbb{R}$ and let [c, d] be a closed subinterval of [a, b]. The **variation** of f over [c, d], denoted by V(f, [c, d]), is defined by

$$V(f, [c, d]) = \sup\{P_v(f, [c, d]) : P \text{ is a partition of } [c, d]\},\$$

and the function f is said to be of **bounded variation** on [c, d] if V(f, [c, d]) is a real number.

Definition 5. Let $f: I \to \mathbb{R}$, where I is an interval. Then f is **absolutely continuous** on I if for every $\varepsilon > 0$, there is a $\delta > 0$ such that for all sets $S = \{[c_i, d_i] : 1 \le i \le n\}$ of non-overlapping sub-intervals of I,

if
$$\sum_{1}^{n} |d_i - c_i| < \delta$$
, then $\sum_{1}^{n} |f(d_i) - f(c_i)| < \varepsilon$.

- **1.** Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and let $a \in \mathbb{R}$. Prove that there exists a sequence $\langle c_n \rangle$ such that $c_n \neq a$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} f'(c_n) = f'(a)$.
- **2.** (Henderson) Let $f : \mathbb{R} \to \mathbb{R}$ be bounded, continuous and strictly increasing. Prove that f is uniformly continuous.
- **3.** (Miller) Let $f: [a, b] \to \mathbb{R}$ be a continuous function on the closed interval [a, b] where f(a) < 0 < f(b). Let $S = \{x \in [a, b] : f(x) < 0\}$, and let $u = \sup(S)$. Prove that f(u) = 0.
- 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function and there is no $x \in \mathbb{R}$ such that f(x) = 0 = f'(x). Let $Z_f = \{x \in \mathbb{R} : f(x) = 0\}$ be the zero set of f. Prove that Z_f has no accumulation points.
- 5. Suppose $\lim_{n \to \infty} s_n = c$ and let $\sigma \colon \mathbb{N} \to \mathbb{N}$ be one-to-one where $\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$ is the set of natural numbers. Prove that $\lim_{n \to \infty} s_{\sigma(n)} = c$.
- **6.** Let $a < x_0 < b$ and suppose that $f: (a, b) \to \mathbb{R}$ is differentiable. Prove the following:
 - (a) For all $\varepsilon > 0$ and $\delta > 0$ there is a $c \in (a, b)$ so that $0 < |c x_0| < \delta$ and $|f'(c) f'(x_0)| < \varepsilon$.
 - (b) If $\lim_{x \to x_0} f'(x) = L$, then $f'(x_0) = L$. [Hint: Prove that $|f'(x_0) L| < \varepsilon$ for all $\varepsilon > 0$.]
- 7. Let a < b. Suppose that $F: [a, b] \to \mathbb{R}$ and $f: [a, b] \to \mathbb{R}$ are continuous. If F'(x) = f(x) for all x in (a, b], then F'(a) = f(a). (The derivative at an endpoint is the appropriate one-sided limit of the difference quotient.)

- 8. Let $f: (0,1] \to \mathbb{R}$ be differentiable on (0,1]. Suppose that $|f'(x)| \le 1$ for all $x \in (0,1]$. Define a sequence $\langle t_n \rangle$ by $t_n = f(\frac{1}{n})$ for all $n \ge 1$. Prove that $\langle t_n \rangle$ converges.
- **9.** Suppose that $f: D \to \mathbb{R}$ preserves convergent sequences. Prove that f is continuous.
- 10. Suppose that $f: D \to \mathbb{R}$ preserves convergent sequences. Prove that if D is bounded, then f is uniformly continuous.
- **11.** Let $f: [a,b] \to \mathbb{R}$ be a continuous function that is differentiable on (a,b). Suppose that $f': (a,b) \to \mathbb{R}$ is bounded. Prove that f is of bounded variation on [a,b].
- **12.** Let $f: [a,b] \to \mathbb{R}$ be a continuous function that is differentiable on (a,b). Suppose that $f': (a,b) \to \mathbb{R}$ is bounded. Prove that f is absolutely continuous on [a,b].
- **13.** Let *I* be an interval. Suppose that $f: I \to \mathbb{R}$ is absolutely continuous. Prove that $f: I \to \mathbb{R}$ is uniformly continuous.
- 14. Let I be an interval. Suppose that $f: I \to \mathbb{R}$ is absolutely continuous. Prove that |f| is absolutely continuous.
- **15.** Let *I* be an interval. Suppose that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are absolutely continuous. Prove that f + g is absolutely continuous.
- **16.** (Wood) Let [a, b] be an interval. Suppose that $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ are of bounded variation. Prove that f + g is of bounded variation.
- 17. Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ is differentiable and |f'(x)| < 1 for all $x \in \mathbb{R}$. Prove that f has at most one fixed point. [Recall that c is a fixed point of f when f(c) = c.]
- **18.** Let a < b, I = [a, b), and $f: I \to \mathbb{R}$ be differentiable on I with $|f'(x)| \leq 1$ for all $x \in I$. Suppose that $\langle x_i \rangle$ is a sequence of distinct points in I that converges to b. Prove that sequence $\langle f(x_i) \rangle$ converges.

2 Group Theory Problems

1. (Downing) Let G be a group and let Z(G) be the center of G. Let $a, b \in G$ be a distinct elements. Define the automorphism $\varphi : G \to G$ by

$$\varphi(x) = a^{-1}xa$$
, for all $x \in G$.

Now, define the automorphism $\sigma: G \to G$ by

$$\sigma(x) = b^{-1}xb$$
, for all $x \in G$.

Prove that $\varphi = \sigma$ if and only if $ba^{-1} \in Z(G)$.

2. (Cretacci) Let $\varphi : G \to G'$ be a homomorphism from the group G to the group G'. Suppose that N' is a normal subgroup of G'. Define $\varphi^{-1}[N'] \subseteq G$ by

$$\varphi^{-1}[N'] = \{ x \in G : \varphi(x) \in N' \}.$$

- (a) Prove that $\varphi^{-1}[N']$ is a subgroup of G.
- (b) Prove that $\varphi^{-1}[N']$ is a normal subgroup of G.
- **3.** (Williams) Let $\varphi: G \to G'$ be a homomorphism where G and G' are groups. Let $K = \ker(\varphi)$. Let H be a subgroup of G. Prove that $\varphi^{-1}[\varphi[H]] = HK$ where $HK = \{hk : h \in H \text{ and } k \in K\}$.
- 4. Let n > 0 be a fixed natural number, G be a group and let e be the identity element in G. Define $H = \{g \in G : g^n = e\}$. Prove that if H is a subgroup of G, then H is normal in G.

- 5. (Nicholas) Let G be a group and let N be a normal subgroup of G. Suppose that the quotient group G/N has order m. Prove that $a^m \in N$ for all $a \in G$.
- **6.** Assume that the group G has a subgroup of order n, a fixed natural number. Let $\{H_i : i \in I\}$ be an indexed set consisting of all the subgroups of G of order n. Given that $\bigcap H_i$ is a $i \in I$ subgroup of G. Prove that $\bigcap_{i \in I} H_i$ is a normal subgroup of G.
- 7. (Krupa) Let G be a group and let N and K be normal subgroups of G such that $N \cap K = \{e\}$, where e is the identity element in G. Let $h \in H$ and $k \in K$. Prove that hk = kh.
- 8. Let $\{N_i : i \in I\}$ be an indexed set consisting of normal subgroups of a group G.
 - (a) Prove that $\bigcap_{i \in I} N_i$ is a subgroup of G.
 - (b) Prove that $\bigcap_{i \in I}^{i \in I} N_i$ is a normal subgroup of G.
- **9.** (Edan) Let G be a group and let $\varphi: G \to G'$ be a homomorphism where G' is an abelian group. Prove that if K is a subgroup of G such that $\ker(\varphi) \subseteq K$, then K is normal in G.