MAT 491, Spring 2019 – Problem Set in Linear Algebra

STATE YOUR PROBLEM AS A THEOREM, AND COMPOSE A PROOF OF THE THEOREM.

- **1.** Let $T: V \to V$ be a linear transformation where V is a vector space over \mathbb{R} . Let k > 0 be a natural number such that $T^k(\mathbf{v}) = \boldsymbol{\theta}$ for all $\mathbf{v} \in V$, were $\boldsymbol{\theta} \in V$ is the zero vector. Suppose that there is a nonzero vector $\mathbf{x} \in V$ such that $T^{k-1}(\mathbf{x}) \neq \boldsymbol{\theta}$. Prove that $\{\mathbf{x}, T(\mathbf{x}), \ldots, T^{k-1}(\mathbf{x})\}$ is a linearly independent set of vectors. [Recall that T^k denotes repeated composition of T with itself, for example, $T^2(\mathbf{v}) = T(T(\mathbf{v}))$.]
- **2.** Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a self-adjoint linear transformation. Let W be a subspace of \mathbb{R}^n that is invariant under T (that is, $T[W] \subseteq W$). Show that W^{\perp} is invariant under T, where $W^{\perp} = \{\mathbf{v} \in \mathbb{R}^n : \mathbf{v} \cdot \mathbf{y} = 0 \text{ for all } \mathbf{y} \in W\}$. [T is self-adjoint if $T(\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, where \cdot is the dot product.]
- **3.** Let A, B and S be $n \times n$ matrices where S is invertible. Suppose that $S^{-1}AS = B$.
 - (a) Prove that A and B have the same eigenvalues.
 - (b) Let λ be an eigenvalue for A and for B. Let E_{λ}^{A} be the eigenspace associated with the matrix A and let E_{λ}^{B} be the eigenspace associated with the matrix B. Prove that these two eigenspaces have the same dimension.
- 4. (Ibrahim) Let A, B and S be $n \times n$ matrices where S is invertible. Suppose that $S^{-1}AS = B$. Prove that the null space of A and the null space of B have the same dimension. Conclude that $\operatorname{rank}(A) = \operatorname{rank}(B)$. Let $F: V \to V, G: W \to W$, and $H: V \to W$ be linear transformations, where V and W are vector spaces. Suppose $H \circ F = G \circ H$ and that H is a bijection. Prove that all of the eigenvalues of G are eigenvalues of F.
- 5. (Cretacci) Let A, B and S be $n \times n$ matrices where S is invertible. Suppose that $S^{-1}AS = B$. Prove that the null space of A and the null space of B have the same dimension. Conclude that rank $(A) = \operatorname{rank}(B)$.
- 6. Let $T: V \to V$ be a linear transformation where V is a vector space over \mathbb{R} . Suppose that k > 0 is a natural number such that $T^k(\mathbf{v}) = \boldsymbol{\theta}$ for all $\mathbf{v} \in V$, were $\boldsymbol{\theta} \in V$ is the zero vector. Let $F: V \to V$ be the linear transformation defined by $F(\mathbf{v}) = \mathbf{v} + T(\mathbf{v})$. Prove that F is one-to-one. [Recall that T^k denotes repeated composition of T with itself, for example, $T^2(\mathbf{v}) = T(T(\mathbf{v}))$.]
- 7. Let V and W be vector spaces. Suppose that $T: V \to W$ is a linear transformation.
 - (a) Assume that T is one-to-one. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ be linearly independent vectors in V. Prove that $T(\mathbf{x}_1), T(\mathbf{x}_2), \ldots, T(\mathbf{x}_k)$ are linearly independent vectors in W.
 - (b) Assume that T is onto W. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be vectors in V. Prove if $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ span V, then $T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k)$ span W.
- 8. (Edan) Let \mathcal{P} denote the vector space of all polynomials with real coefficients and degree $\leq n$, with the usual polynomial addition and scalar multiplication. Define the function $T: \mathcal{P} \to \mathcal{P}$ by T(p(x)) = p(x) + p'(x).
 - (a) Prove that T is a linear transformation.
 - (b) Prove that T is one-to-one.
 - (c) Prove that T is onto \mathcal{P} .
- **9.** (Downing) Let A be an $n \times n$ matrix and let **v** be an eigenvector for A with eigenvalue λ .
 - (a) Let $B = P^{-1}AP$ for an invertible $n \times n$ matrix P. Find an eigenvector and associate eigenvalue for B.
 - (b) Let f(x) be a polynomial of degree k and let C = f(A). Find an eigenvector and associate eigenvalue for C. [For example, suppose that $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$. Then $f(A) = a_3A^3 + a_2A^2 + a_1A + a_0I$ where I is the $n \times n$ identity matrix.]
- 10. (Williams) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for \mathbb{R}^n . Prove that T is one-to-one if and only if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ is also a basis for \mathbb{R}^n .
- 11. (Krupa) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}$ be a basis for \mathbb{R}^n so that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis for the null space of T. Prove that $\{T(\mathbf{x}_{k+1}), \dots, T(\mathbf{x}_n)\}$ is a basis for the image space $T[\mathbb{R}^n]$.

- 12. Let \mathcal{P}_3 be the vector space of polynomials with real coefficients and degree ≤ 3 and let \mathcal{P}_2 be the vector space of polynomials with real coefficients and degree ≤ 2 . Consider the function $T : \mathcal{P}_2 \to \mathcal{P}_3$ defined by $T(p) = \int_0^x p(x) dx$. Prove that T is a linear transformation. Then prove that T is one-to-one. Finally, show that T is not onto \mathcal{P}_3 .
- **13.** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{x}_{k+1}, \dots, \mathbf{x}_n\}$ be a basis for \mathbb{R}^n so that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis for the null space of T. Prove that $\{T(\mathbf{x}_{k+1}), \dots, T(\mathbf{x}_n)\}$ is a basis for the image space $T[\mathbb{R}^n]$.
- 14. Let $T: V \to W$ be a linear transformation from vector space V to vector space W. Let $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ be a finite set of vectors each of which is in V.
 - (a) Prove that if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ is linearly independent, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.
 - (b) Suppose that T is one-to-one. Prove that if $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent, then the set of vectors $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_k)\}$ is linearly independent.
- **15.** Let $T: V \to V$ be a linear transformation where V is a vector space over \mathbb{R} . Suppose that $T^4(\mathbf{v}) = \boldsymbol{\theta}$ for all $\mathbf{v} \in V$, were $\boldsymbol{\theta} \in V$ is the zero vector. Let $F: V \to V$ be the linear transformation defined by $F(\mathbf{v}) = \mathbf{v} + T(\mathbf{v})$. Prove that F is onto V. [Recall that T^k denotes repeated composition of T with itself, for example, $T^2(\mathbf{v}) = T(T(\mathbf{v}))$.]
- **16.** Let V and W be vector spaces, and let $T: V \to W$ be a surjective linear transformation. Suppose that $A \subseteq V$ is a set of vectors that spans V (A may be an infinite set). Let $B \subseteq W$ be defined by $B = \{T(\mathbf{v}) : \mathbf{v} \in A\}$. Prove that B spans W.
- 17. (Wood) Let V and W be vector spaces. Let $T: V \to W$ be a one-to-one and onto linear transformation. Thus, the inverse function of T, denoted by $T^{-1}: W \to V$, exists. Prove that $T^{-1}: W \to V$ is a linear transformation.
- 18. (Budd-Nicholas) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that every nonzero $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector. Show that there exists a real number a such that $T(\mathbf{v}) = a\mathbf{v}$ for all vectors $\mathbf{v} \in \mathbb{R}^n$.
- 19. (Miller) Let A be a nonzero square matrix. Suppose that A^k equals the zero matrix for some natural number k > 0. Prove that A is not diagonalizable.
- **20.** (Henderson) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^n$ be linear transformations. Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ be a basis for \mathbb{R}^n . Suppose that each vector in $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is an eigenvector for S and for T. Prove that ST = TS, where ST and TS denote compositions.
- **21.** Let \mathcal{P}_3 be the vector space of polynomials with real coefficients and degree ≤ 3 . Consider the linear transformation $T: \mathcal{P}_3 \to \mathcal{P}_3$ defined by T(p(x)) = p(x) + p(-x). The vectors space \mathcal{P}_3 has the basis $x^3, x^2, x, 1$ with the given order (that is, x^3 is the first basis vector, x^2 is the second basis vector, etc.. Thus, every polynomial

 $p(x) = ax^3 + bx^2 + cx + d$ will be represented by the vector $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$.

(a) Find the 4×4 matrix A that represents T with respect to the basis $x^3, x^2, x, 1$; that is, find the matrix

A so that
$$T\left(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \right) = A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
.

(b) Find a basis for the null space of T.