MAT 491, Spring 2019 - Problem Set in Linear Algebra

State your problem as a theorem, and compose a proof of the theorem.

1. Let $T: V \rightarrow V$ be a linear transformation where V is a vector space over \mathbb{R}. Let $k>0$ be a natural number such that $T^{k}(\mathbf{v})=\boldsymbol{\theta}$ for all $\mathbf{v} \in V$, were $\boldsymbol{\theta} \in V$ is the zero vector. Suppose that there is a nonzero vector $\mathbf{x} \in V$ such that $T^{k-1}(\mathbf{x}) \neq \boldsymbol{\theta}$. Prove that $\left\{\mathbf{x}, T(\mathbf{x}), \ldots, T^{k-1}(\mathbf{x})\right\}$ is a linearly independent set of vectors. [Recall that T^{k} denotes repeated composition of T with itself, for example, $T^{2}(\mathbf{v})=T(T(\mathbf{v}))$.]
2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a self-adjoint linear transformation. Let W be a subspace of \mathbb{R}^{n} that is invariant under T (that is, $T[W] \subseteq W$). Show that W^{\perp} is invariant under T, where $W^{\perp}=\left\{\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v} \cdot \mathbf{y}=0\right.$ for all $\left.\mathbf{y} \in W\right\}$. [T is self-adjoint if $T(\mathbf{x}) \cdot \mathbf{y}=\mathbf{x} \cdot T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, where \cdot is the dot product.]
3. Let A, B and S be $n \times n$ matrices where S is invertible. Suppose that $S^{-1} A S=B$.
(a) Prove that A and B have the same eigenvalues.
(b) Let λ be an eigenvalue for A and for B. Let E_{λ}^{A} be the eigenspace associated with the matrix A and let E_{λ}^{B} be the eigenspace associated with the matrix B. Prove that these two eigenspaces have the same dimension.
4. (Ibrahim) Let A, B and S be $n \times n$ matrices where S is invertible. Suppose that $S^{-1} A S=B$. Prove that the null space of A and the null space of B have the same dimension. Conclude that $\operatorname{rank}(A)=\operatorname{rank}(B)$. Let $F: V \rightarrow V, G: W \rightarrow W$, and $H: V \rightarrow W$ be linear transformations, where V and W are vector spaces. Suppose $H \circ F=G \circ H$ and that H is a bijection. Prove that all of the eigenvalues of G are eigenvalues of F.
5. (Cretacci) Let A, B and S be $n \times n$ matrices where S is invertible. Suppose that $S^{-1} A S=B$. Prove that the null space of A and the null space of B have the same dimension. Conclude that $\operatorname{rank}(A)=\operatorname{rank}(B)$.
6. Let $T: V \rightarrow V$ be a linear transformation where V is a vector space over \mathbb{R}. Suppose that $k>0$ is a natural number such that $T^{k}(\mathbf{v})=\boldsymbol{\theta}$ for all $\mathbf{v} \in V$, were $\boldsymbol{\theta} \in V$ is the zero vector. Let $F: V \rightarrow V$ be the linear transformation defined by $F(\mathbf{v})=\mathbf{v}+T(\mathbf{v})$. Prove that F is one-to-one. [Recall that T^{k} denotes repeated composition of T with itself, for example, $T^{2}(\mathbf{v})=T(T(\mathbf{v}))$.]
7. Let V and W be vector spaces. Suppose that $T: V \rightarrow W$ is a linear transformation.
(a) Assume that T is one-to-one. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ be linearly independent vectors in V. Prove that $T\left(\mathbf{x}_{1}\right), T\left(\mathbf{x}_{2}\right), \ldots, T\left(\mathbf{x}_{k}\right)$ are linearly independent vectors in W.
(b) Assume that T is onto W. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ be vectors in V. Prove if $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ span V, then $T\left(\mathbf{x}_{1}\right), T\left(\mathbf{x}_{2}\right), \ldots, T\left(\mathbf{x}_{k}\right)$ span W.
8. (Edan) Let \mathcal{P} denote the vector space of all polynomials with real coefficients and degree $\leq n$, with the usual polynomial addition and scalar multiplication. Define the function $T: \mathcal{P} \rightarrow \mathcal{P}$ by $T(p(x))=p(x)+p^{\prime}(x)$.
(a) Prove that T is a linear transformation.
(b) Prove that T is one-to-one.
(c) Prove that T is onto \mathcal{P}.
9. (Downing) Let A be an $n \times n$ matrix and let \mathbf{v} be an eigenvector for A with eigenvalue λ.
(a) Let $B=P^{-1} A P$ for an invertible $n \times n$ matrix P. Find an eigenvector and associate eigenvalue for B.
(b) Let $f(x)$ be a polynomial of degree k and let $C=f(A)$. Find an eigenvector and associate eigenvalue for C. [For example, suppose that $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. Then $f(A)=a_{3} A^{3}+a_{2} A^{2}+a_{1} A+a_{0} I$ where I is the $n \times n$ identity matrix.]
10. (Williams) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for \mathbb{R}^{n}. Prove that T is one-to-one if and only if $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is also a basis for \mathbb{R}^{n}.
11. (Krupa) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{x}_{k+1}, \ldots \mathbf{x}_{n}\right\}$ be a basis for \mathbb{R}^{n} so that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for the null space of T. Prove that $\left\{T\left(\mathbf{x}_{k+1}\right), \ldots T\left(\mathbf{x}_{n}\right)\right\}$ is a basis for the image space $T\left[\mathbb{R}^{n}\right]$.
12. Let \mathcal{P}_{3} be the vector space of polynomials with real coefficients and degree ≤ 3 and let \mathcal{P}_{2} be the vector space of polynomials with real coefficients and degree ≤ 2. Consider the function $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ defined by $T(p)=\int_{0}^{x} p(x) d x$. Prove that T is a linear transformation. Then prove that T is one-to-one. Finally, show that T is not onto \mathcal{P}_{3}.
13. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{x}_{k+1}, \ldots \mathbf{x}_{n}\right\}$ be a basis for \mathbb{R}^{n} so that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a basis for the null space of T. Prove that $\left\{T\left(\mathbf{x}_{k+1}\right), \ldots T\left(\mathbf{x}_{n}\right)\right\}$ is a basis for the image space $T\left[\mathbb{R}^{n}\right]$.
14. Let $T: V \rightarrow W$ be a linear transformation from vector space V to vector space W. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a finite set of vectors each of which is in V.
(a) Prove that if $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent.
(b) Suppose that T is one-to-one. Prove that if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, then the set of vectors $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent.
15. Let $T: V \rightarrow V$ be a linear transformation where V is a vector space over \mathbb{R}. Suppose that $T^{4}(\mathbf{v})=\boldsymbol{\theta}$ for all $\mathbf{v} \in V$, were $\boldsymbol{\theta} \in V$ is the zero vector. Let $F: V \rightarrow V$ be the linear transformation defined by $F(\mathbf{v})=\mathbf{v}+T(\mathbf{v})$. Prove that F is onto V. [Recall that T^{k} denotes repeated composition of T with itself, for example, $T^{2}(\mathbf{v})=T(T(\mathbf{v}))$.]
16. Let V and W be vector spaces, and let $T: V \rightarrow W$ be a surjective linear transformation. Suppose that $A \subseteq V$ is a set of vectors that spans V (A may be an infinite set). Let $B \subseteq W$ be defined by $B=\{T(\mathbf{v}): \mathbf{v} \in A\}$. Prove that B spans W.
17. (Wood) Let V and W be vector spaces. Let $T: V \rightarrow W$ be a one-to-one and onto linear transformation. Thus, the inverse function of T, denoted by $T^{-1}: W \rightarrow V$, exists. Prove that $T^{-1}: W \rightarrow V$ is a linear transformation.
18. (Budd-Nicholas) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation such that every nonzero $\mathrm{x} \in \mathbb{R}^{n}$ is an eigenvector. Show that there exists a real number a such that $T(\mathbf{v})=a \mathbf{v}$ for all vectors $\mathbf{v} \in \mathbb{R}^{n}$.
19. (Miller) Let A be a nonzero square matrix. Suppose that A^{k} equals the zero matrix for some natural number $k>0$. Prove that A is not diagonalizable.
20. (Henderson) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear transformations. Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a basis for \mathbb{R}^{n}. Suppose that each vector in $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is an eigenvector for S and for T. Prove that $S T=T S$, where $S T$ and $T S$ denote compositions.
21. Let \mathcal{P}_{3} be the vector space of polynomials with real coefficients and degree ≤ 3. Consider the linear transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ defined by $T(p(x))=p(x)+p(-x)$. The vectors space \mathcal{P}_{3} has the basis $x^{3}, x^{2}, x, 1$ with the given order (that is, x^{3} is the first basis vector, x^{2} is the second basis vector, etc.. Thus, every polynomial $p(x)=a x^{3}+b x^{2}+c x+d$ will be represented by the vector $\left[\begin{array}{c}a \\ b \\ c \\ d\end{array}\right]$.
(a) Find the 4×4 matrix A that represents T with respect to the basis $x^{3}, x^{2}, x, 1$; that is, find the matrix

$$
A \text { so that } T\left(\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right)=A\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] .
$$

(b) Find a basis for the null space of T.

