MAT 430 Review Problems for Midterm on Chapters 1, 2, and 3.1-3.3.3. Midterm – Friday, March 20, 2020.

Problem 1. State the subset axiom.

Problem 2. Let \mathcal{F} be a set and let $C \in \mathcal{F}$. Prove $\bigcap \mathcal{F} \subseteq C$.

Problem 3. Let \mathcal{F} and A be sets. Prove that if $A \subseteq C$ for some $C \in \mathcal{F}$, then $A \subseteq \bigcup \mathcal{F}$.

Problem 4. Let \mathcal{F} and A be sets and $\mathcal{F} \neq \emptyset$. Prove that if $A \subseteq C$ for all $C \in \mathcal{F}$, then $A \subseteq \bigcap \mathcal{F}$.

Problem 5. Let \mathcal{F} and A be sets. Suppose $C \subseteq A$ for every $C \in \mathcal{F}$. Prove that $\bigcup \mathcal{F} \subseteq A$.

Problem 6. Let A be a set. Prove that $\bigcup \mathcal{P}(A) = A$.

Problem 7. Let A be a set. Prove that $A \subseteq \mathcal{P}(\bigcup A)$.

Problem 8. Prove that $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.

Problem 9. Let \mathcal{F} and \mathcal{G} be sets. Then there is a unique set \mathcal{D} such that for all Y, we have that $Y \in \mathcal{D}$ if and only if $Y = A \cup B$ for some $A \in \mathcal{F}$ and some $B \in \mathcal{G}$.

Problem 10. Let F be a relation from X to Y. Suppose $A \subseteq X$ and $B \subseteq X$. Prove that $F[A] \setminus F[B] \subseteq F[A \setminus B]$.

Problem 11. Let *R* be a relation. We know by the discussion in the text prior to Definition 3.2.5 that dom(*R*) and ran(*R*) are sets. Let *T* be a relation. Evaluate the set dom(*T*) \cap ran(*T*⁻¹).

Problem 12. Let R be a relation. Prove that $fld(R) = \bigcup \bigcup R$. (See Definition 3.2.5)

Problem 13. Let F and G be relations, where dom $(F) \subseteq X$ and $A \subseteq X$. Prove that $F \upharpoonright A$, F[A], and $F \circ G$ are sets.

Problem 14. Let R be a relation on A. Prove that R is transitive if and only if $R \circ R \subseteq R$.

Problem 15. Let \mathcal{G} be a nonempty set of transitive relations on A. Prove that $\bigcap \mathcal{G}$ is transitive.

Problem 16. Let *R* be an equivalence relation on *A*. Prove that $R \circ R = R$.

Problem 17. Let R and S be single-rooted relations. Prove that $R \circ S$ is single-rooted.

Problem 18. Let $F: X \to Y$ be onto $Y, C \subseteq Y, D \subseteq Y$. Prove $F^{-1}[C] \subseteq F^{-1}[D]$ implies $C \subseteq D$.

Problem 19. Let \mathcal{H} be a set of functions. Suppose that for all f and g in \mathcal{H} we have either $f \subseteq g$ or $g \subseteq f$. Prove that $\bigcup \mathcal{H}$ is a function.

Problem 20. Assume $f: X \to Y$ is onto Y. Let $C \subseteq Y$. Prove that $f[f^{-1}[C]] = C$.

Problem 21. Let F and G be functions, and let $A \subseteq \text{dom}(G)$. Prove that $(F \circ G)[A] = F[G[A]]$.

Problem 22. Let $F: A \to B$ be a onto B. Let $G: \mathcal{P}(A) \to \mathcal{P}(B)$ be the function defined by G(X) = F[X] for each $X \in \mathcal{P}(A)$. Prove that G is onto $\mathcal{P}(B)$.

Problem 23. Prove $\bigcap \{ \mathcal{P}(B) : B \in \mathcal{B} \} = \mathcal{P}(\bigcap \mathcal{B}).$

Problem 24. Prove $\bigcup \{ \mathcal{P}(B) : B \in \mathcal{B} \} \subseteq \mathcal{P}(\bigcup \mathcal{B}).$

Problem 25. Let F be a function and let $A \subseteq B \subseteq \text{dom}(F)$. Prove that $F[A] \subseteq F[B]$.

Problem 26. Let $g: A \to B$ and $f: B \to C$. Suppose that $(f \circ g): A \to C$ is one-to-one. Prove that g is one-to-one.

Problem 27. Let $g: A \to B$ and $f: B \to C$. Suppose that $(f \circ g): A \to C$ is one-to-one and g is onto. Prove that f is one-to-one.