MAT 430 Review Problems for Midterm on Chapters 1, 2, and 3.1-3.3.3. Midterm - Friday, March 20, 2020.

Problem 1. State the subset axiom.
Problem 2. Let \mathcal{F} be a set and let $C \in \mathcal{F}$. Prove $\bigcap \mathcal{F} \subseteq C$.
Problem 3. Let \mathcal{F} and A be sets. Prove that if $A \subseteq C$ for some $C \in \mathcal{F}$, then $A \subseteq \bigcup \mathcal{F}$.
Problem 4. Let \mathcal{F} and A be sets and $\mathcal{F} \neq \emptyset$. Prove that if $A \subseteq C$ for all $C \in \mathcal{F}$, then $A \subseteq \bigcap \mathcal{F}$.
Problem 5. Let \mathcal{F} and A be sets. Suppose $C \subseteq A$ for every $C \in \mathcal{F}$. Prove that $\bigcup \mathcal{F} \subseteq A$.
Problem 6. Let A be a set. Prove that $\cup \mathcal{P}(A)=A$.
Problem 7. Let A be a set. Prove that $A \subseteq \mathcal{P}(\bigcup A)$.
Problem 8. Prove that $(A \backslash B) \times C=(A \times C) \backslash(B \times C)$.
Problem 9. Let \mathcal{F} and \mathcal{G} be sets. Then there is a unique set \mathcal{D} such that for all Y, we have that $Y \in \mathcal{D}$ if and only if $Y=A \cup B$ for some $A \in \mathcal{F}$ and some $B \in \mathcal{G}$.

Problem 10. Let F be a relation from X to Y. Suppose $A \subseteq X$ and $B \subseteq X$. Prove that $F[A] \backslash F[B] \subseteq F[A \backslash B]$.

Problem 11. Let R be a relation. We know by the discussion in the text prior to Definition 3.2.5 that $\operatorname{dom}(R)$ and $\operatorname{ran}(R)$ are sets. Let T be a relation. Evaluate the set $\operatorname{dom}(T) \cap \operatorname{ran}\left(T^{-1}\right)$.

Problem 12. Let R be a relation. Prove that $\operatorname{fld}(R)=\bigcup \bigcup R$. (See Definition 3.2.5)
Problem 13. Let F and G be relations, where $\operatorname{dom}(F) \subseteq X$ and $A \subseteq X$. Prove that $F \upharpoonright A, F[A]$, and $F \circ G$ are sets.

Problem 14. Let R be a relation on A. Prove that R is transitive if and only if $R \circ R \subseteq R$.
Problem 15. Let \mathcal{G} be a nonempty set of transitive relations on A. Prove that $\bigcap \mathcal{G}$ is transitive.
Problem 16. Let R be an equivalence relation on A. Prove that $R \circ R=R$.
Problem 17. Let R and S be single-rooted relations. Prove that $R \circ S$ is single-rooted.
Problem 18. Let $F: X \rightarrow Y$ be onto $Y, C \subseteq Y, D \subseteq Y$. Prove $F^{-1}[C] \subseteq F^{-1}[D]$ implies $C \subseteq D$.
Problem 19. Let \mathcal{H} be a set of functions. Suppose that for all f and g in \mathcal{H} we have either $f \subseteq g$ or $g \subseteq f$. Prove that $\bigcup \mathcal{H}$ is a function.

Problem 20. Assume $f: X \rightarrow Y$ is onto Y. Let $C \subseteq Y$. Prove that $f\left[f^{-1}[C]\right]=C$.
Problem 21. Let F and G be functions, and let $A \subseteq \operatorname{dom}(G)$. Prove that $(F \circ G)[A]=F[G[A]]$.
Problem 22. Let $F: A \rightarrow B$ be a onto B. Let $G: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ be the function defined by $G(X)=F[X]$ for each $X \in \mathcal{P}(A)$. Prove that G is onto $\mathcal{P}(B)$.

Problem 23. Prove $\bigcap\{\mathcal{P}(B): B \in \mathcal{B}\}=\mathcal{P}(\bigcap \mathcal{B})$.
Problem 24. Prove $\bigcup\{\mathcal{P}(B): B \in \mathcal{B}\} \subseteq \mathcal{P}(\bigcup \mathcal{B})$.
Problem 25. Let F be a function and let $A \subseteq B \subseteq \operatorname{dom}(F)$. Prove that $F[A] \subseteq F[B]$.
Problem 26. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is one-to-one. Prove that g is one-to-one.

Problem 27. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is one-to-one and g is onto. Prove that f is one-to-one.

