Modular Arithmetic

Because 0, 1, 2, ..., n-1 gives a complete residue system (mod n), it follows that any combination of sums, differences and products of these numbers will be congruent (mod n) to a unique number in this residue system. This leads to the concept of modular arithmetic.

For example, consider the set $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ where 0, 1, 2, 3, 4, 5 is a complete residue system (mod 6). Notice that $3 + 5 \equiv 2 \pmod{6}$ and $3 + 3 \equiv 0 \pmod{6}$. In addition, we see that $3 \cdot 5 \equiv 3 \pmod{6}$ and $3 \cdot 3 \equiv 3 \pmod{6}$. So, we can perform arithmetic on the set $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$. Below is an addition table and a multiplication table for modular arithmetic on the set \mathbb{Z}_6 .

a+b	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4
			,			

 $a + b \pmod{6}$

a^{b}	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

 $a \cdot b \pmod{6}$

Table 3.1: Modular Arithmetic (mod 6)

For another example, consider $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ where 0, 1, 2, 3, 4 is a complete residue system (mod 5). Notice that $3 + 2 \equiv 0 \pmod{5}$ and $3 + 3 \equiv 1 \pmod{5}$. In addition, we see that $3 \cdot 4 \equiv 2 \pmod{5}$ and $3 \cdot 3 \equiv 4 \pmod{5}$. Below is an addition table and a multiplication table for modular arithmetic on the set \mathbb{Z}_5 .

a+b	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

 $a + b \pmod{5}$

a^{b}	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

 $a \cdot b \pmod{5}$

Table 3.2: Modular Arithmetic (mod 5)

Problem 10. Show that every perfect square is congruent to 0, 1 or 4 (mod 5).

Solution. Let n be a perfect square. So $n=k^2$ for some integer k. Theorem 3.2.8 asserts that either $k\equiv 0\,(\mathrm{mod}\ 5),\ k\equiv 1\,(\mathrm{mod}\ 5),\ k\equiv 2\,(\mathrm{mod}\ 5),\ k\equiv 3\,(\mathrm{mod}\ 5)$ or $k\equiv 4\,(\mathrm{mod}\ 5)$. Thus, either $k^2\equiv 0^2\,(\mathrm{mod}\ 5),\ k^2\equiv 1^2\,(\mathrm{mod}\ 5),\ k^2\equiv 2^2\,(\mathrm{mod}\ 5),\ k^2\equiv 3^2\,(\mathrm{mod}\ 5)$ or $k^2\equiv 4^2\,(\mathrm{mod}\ 5)$. Since $9\equiv 4\,(\mathrm{mod}\ 5)$ and $16\equiv 1\,(\mathrm{mod}\ 5)$, we conclude that either $k^2\equiv 0\,(\mathrm{mod}\ 5),\ k^2\equiv 1\,(\mathrm{mod}\ 5)$, or $k^2\equiv 1\,(\mathrm{mod}\ 5)$.

Polynomials with Integer Coefficients

Definition 3.2.11. A function f(x) of the form $f(x) = a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$ were $a_k, a_{k-1}, \ldots, a_1, a_0$ are all integers is called a **polynomial with integer coefficients**.

Note that if f(x) is a polynomial with integer coefficients, then for any integer a, the value f(a) will also be integer.

Example 11. The functions $f(x) = 3x^4 - 2x^2 + 5x + 4$ and $g(x) = 5x^3 - 9x^2 - x + 10$ are polynomials with integer coefficients. Notice that whenever a is an integer then f(a) and g(a) will also be integers. For example, f(2) = 54, f(-2) = 34, g(-5) = -835 and g(5) = 405.

Theorem 3.2.12 (Substitution Theorem). Let f(x) be a polynomial with integer coefficients. If $a \equiv b \pmod{n}$, then $f(a) \equiv f(b) \pmod{n}$.

Proof. Let $f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$ where $a_k, a_{k-1}, \dots, a_1, a_0$ are all integers. Assume that $a \equiv b \pmod{n}$. Then, by Theorems 3.2.2 and 3.2.5, we see that

$$(a_k a^k + a_{k-1} a^{k-1} + \dots + a_1 a + a_0) \equiv (a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0) \pmod{n}.$$

Therefore, $f(a) \equiv f(b) \pmod{n}$.

Applications of Theorem 3.2.12

Is there is a simple method that will always produce prime numbers? More specifically:

Is there a polynomial f(x), of degree 1 or higher, with integer coefficients such that f(m) is a prime number for *every* integer m?

Theorem 3.2.13. Let f(x) be a polynomial, of degree 1 or higher, with integer coefficients. Then there exist an integer m such that f(m) is not a prime number.

Proof. Let f(x) be a polynomial, of degree 1 or higher, with integer coefficients. Suppose, for a contradiction, that f(m) is a prime number for every integer m. Let f(x) have the form $f(x) = a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$ were $a_k, a_{k-1}, \ldots, a_1, a_0$ are all integers. Since f(m) is always a prime number, it follows that $a_k > 0$. Furthermore, since $a_k > 0$, it follows that f(x) gets larger and larger as x gets larger and larger. Thus, there must be an integer a such that f(a) > 1. Let n = f(a). Again, because f(x) gets larger and larger as x gets larger and larger, there is a natural number j such that f(a+jn) > n. So, from our assumption, we must have that f(a+jn) is a prime. Now, note that $f(a+jn) \equiv a \pmod{n}$. Theorem 3.2.12 asserts that $f(a+jn) \equiv f(a) \pmod{n}$. Since f(a) = n, we conclude that $f(a+jn) \equiv f(a) \equiv n \equiv 0 \pmod{n}$. Hence, $f(a+jn) \equiv 0 \pmod{n}$ and thus, $n \mid f(a+jn)$ where 1 < n < f(a+jn). Therefore, f(a+jn) is not a prime number. This contradiction shows that there must exist an integer m where f(m) is not a prime.

We now recall that we express our integers n > 0 using decimal notation. For example, the natural number 6, 235 is in decimal notation. So,

$$6,235 = 6 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10 + 5.$$

So every integer n > 0 can be expressed in the form

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0$$
(3.8)

where $a_k, a_{k-1}, \ldots, a_1, a_0$ are the digits of n from left to right. So, a_k is the left most digit and a_0 is the rightmost digit. Each digit a_i is between 0 and 9. Now, let f(x) be the polynomial (with integer coefficients) defined by

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0.$$

Hence,

$$f(10) = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0 = n$$

and

$$f(1) = a_k 1^k + a_{k-1} 1^{k-1} + \dots + a_1 1 + a_0 = a_k + a_{k-1} + \dots + a_1 + a_0.$$

Clearly, $10 \equiv 1 \pmod{9}$. Thus, Theorem 3.2.12 implies that $f(10) \equiv f(1) \pmod{9}$. We conclude that

$$n \equiv (a_k + a_{k-1} + \dots + a_1 + a_0) \pmod{9}. \tag{3.9}$$

Thus, any natural number is congruent to the sum of its digits (mod 9).

Theorem 3.2.14. Let n be a natural number. Then n is evenly divisible by 9 if and only if the sum of its digits is evenly divisible by 9.

Proof. Let $s = a_k + a_{k-1} + \cdots + a_1 + a_0$ be the sum of the digits in the decimal expression of n. By (3.9) we have that (\star) $n \equiv s \pmod{9}$. If $9 \mid n$, then $n \equiv 0 \pmod{9}$. Thus, (\star) implies that $s \equiv 0 \pmod{9}$ and therefore, $9 \mid s$. Conversely, if $9 \mid s$, then $s \equiv 0 \pmod{9}$. Thus, (\star) implies that $n \equiv 0 \pmod{9}$ and therefore, $9 \mid n$.

Example 12. Decide whether or not the following natural numbers n are divisible by 9.

- 1. n = 111, 105
- 2. n = 518,933
- 3. n = 51,893,618,931.

Problem 13. Show that

$$31 \mid (59 \cdot 63^{23} + 6 \cdot 63^{45} - 3).$$

Hint: $63 \equiv \underline{?} \pmod{31}$

Solution. We shall show that $(59 \cdot 63^{23} + 6 \cdot 63^{45} - 3) \equiv 0 \pmod{31}$. Since $63 \equiv 1 \pmod{31}$, we see that $63^{23} \equiv 1^{23} \pmod{31}$ and $63^{45} \equiv 1^{45} \pmod{31}$. Thus, we have the following:

$$\begin{array}{rcl} (59 \cdot 63^{23} + 6 \cdot 63^{45} - 3) & \equiv & (59 \cdot 1^{23} + 6 \cdot 1^{45} - 3) \, (\bmod \, 31) \\ & \equiv & (59 + 6 - 3) \, (\bmod \, 31) \\ & \equiv & 62 \, (\bmod \, 31) \\ & \equiv & 0 \, (\bmod \, 31). \end{array}$$

Therefore, $(59 \cdot 63^{23} + 6 \cdot 63^{45} - 3) \equiv 0 \pmod{31}$ and thus, $31 \mid (59 \cdot 63^{23} + 6 \cdot 63^{45} - 3)$.

Problem 14. Show that

$$31 \mid (5(64)^3 + 6(34)^2 - 1).$$

Hint: $64 \equiv \underline{?} \pmod{31}$ and $34 \equiv \underline{?} \pmod{31}$

Problem 15. Let m and n be arbitrary positive integers. Show that

$$19 \mid (13(20)^m + 56(39)^n + 7).$$

Problem 16. Let $n = a_4 10^4 + a_3 10^3 + a_2 10^2 + a_1 10 + a_0$. Show that

$$n \equiv (a_4 - a_3 + a_2 - a_1 + a_0) \pmod{11}$$
.

Hint: $10 \equiv -1 \pmod{11}$.

Exercises 3.2

Do problems #13, 15, 16, 23, 29, 33 on pages 64-66 of text.

EXERCISE NOTES.

- Problem 13: 4,926,834,923 = 4,926,834,920 + 3. Equation (3.8) (above) implies that $4 \mid 4,926,834,920$. Now, show that $4,926,834,923 \equiv 3 \pmod{4}$.
- Problem 15: Use the fact that $5^2 \equiv 2^3 \pmod{17}$.
- Problem 16: Use a similar idea as in the the above hint for Problem 15.
- Problem 29: There are an infinite number of integers n with $n \equiv 1 \pmod{43}$.
- Problem 33: Since $n^2 + 2$ and $n^2 2$ are both prime, it follows that $n^2 + 2 > 3$ and $n^2 + 2$ not divisible by 3. To prove that $3 \mid n$, show that $n \equiv 0 \pmod{3}$ by establishing that n is not congruent to 1 or 2 (mod 3).