MAT 300 - Final Exam Review Problems on Chapters 5 and 6
 Final Exam on Monday Dec. 9, 9:40 to 11:00. Bacon 214A

1. Prove the following theorems:
(a) Theorem. $(A \backslash B) \cap(C \backslash B)=(A \cap C) \backslash B$.
(b) Theorem. $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$.
(c) Theorem. If $A \backslash B \subseteq C$, then $A \backslash C \subseteq B$.
2. Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(n)=3 n$.
(a) Is f one-to-one? Prove it, or provide a counterexample.
(b) Is f onto? Prove it, or provide a counterexample.
3. Let $A=\{x \in \mathbb{R}: x \neq-1\}$. Consider the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=\frac{2 x}{x+1}$. Prove that f is one-to-one.
4. Let $A=\{x \in \mathbb{R}: x \neq 2\}$. Prove that the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=\frac{4 x}{x-2}$ is not onto.
5. Let $A=\{x \in \mathbb{R}: x \neq 2\}$ and let $B=\{y \in \mathbb{R}: y \neq 4\}$. Define the function $f: A \rightarrow B$ by $f(x)=\frac{4 x}{x-2}$. Prove that f is onto.
6. Let $A=\{x \in \mathbb{R}: x \neq 2\}$ and let $B=\{y \in \mathbb{R}: y \neq 4\}$. Prove the function $f: A \rightarrow B$ defined by $f(x)=\frac{4 x}{x-2}$ is one-to-one.
7. Let $a, b \in \mathbb{R}$ with $a \neq 0$ and define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=a x+b$. Given that f is one-to-one and onto, find a formula for the inverse function $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$.
8. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is one-to-one. Define $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$by $g(x)=(f(x))^{2}$. Prove that g is one-to-one. (Recall that $\sqrt{x^{2}}=|x|$.)
9. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one and let $a, b \in \mathbb{R}$ where $a \neq 0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=a f(x)+b$. Prove that g is one-to-one.
10. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto and let $a, b \in \mathbb{R}$ where $a \neq 0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=a f(x)+b$. Prove that g is onto.
11. Let $f: B \rightarrow C$ and $g: A \rightarrow B$. Suppose that $(f \circ g): A \rightarrow C$ is onto. Prove that f is onto.
12. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is onto and f is one-to-one. Prove that g is onto.
13. Let A, B and C be sets. Prove that if $A \subseteq B$ and $B \cap C=\emptyset$, then $A \subseteq B \backslash C$.
14. Let A, B and C be sets. Prove that if $A \backslash B \subseteq C$ and $A \nsubseteq C$, then $A \cap B \neq \emptyset$.
15. Suppose $g: A \rightarrow B$ and $f: B \rightarrow C$ are one-to-one. Prove that $(f \circ g): A \rightarrow C$ is one-to-one.
16. Suppose that $g: A \rightarrow B$ and $f: B \rightarrow C$ are onto. Prove that $(f \circ g): A \rightarrow C$ is onto.
17. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto. Let $c \in \mathbb{R}$ be non-zero. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=c f(x)$. Prove that the function h is onto.
18. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one. Let $c \in \mathbb{R}$ be non-zero. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=c f(x)$. Prove that the function h is one-to-one.
19. Let A and B be sets. Prove that $B \cup(A \backslash B)=A \cup B$.
20. Let A and B be sets. Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
21. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{i}: i \in I\right\}$ be indexed families of sets with the same indexed set I. Suppose $A_{i} \subseteq B_{i}$ for all $i \in I$. Prove that $\bigcup_{i \in I} A_{i} \subseteq \bigcup_{i \in I} B_{i}$.
22. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{i}: i \in I\right\}$ be indexed families of sets with the same indexed set I. Suppose $A_{i} \subseteq B_{i}$ for all $i \in I$. Prove that $\bigcap_{i \in I} A_{i} \subseteq \bigcap_{i \in I} B_{i}$.
23. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{j}: j \in J\right\}$ be indexed families of sets. Suppose that there is an $i_{0} \in I$ such that $A_{i_{0}} \subseteq B_{j}$ for all $j \in J$. Prove that $\bigcap_{i \in I} A_{i} \subseteq \bigcap_{j \in J} B_{j}$.
24. Let $\left\{A_{i}: i \in I\right\}$ be an indexed family of sets. Prove that $X \subseteq \bigcap_{i \in I} A_{i}$ if and only if $X \subseteq A_{i}$ for all $i \in I$.
25. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=(f(x))^{2}$. Show that g is not one-to-one.
26. Let $a, b \in \mathbb{R}$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=a x+b$. Show that if g is one-to-one, then $a \neq 0$.
27. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is one-to-one. Prove that g is one-to-one.
28. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is one-to-one and that g is onto. Prove that f is one-to-one.
29. Let $f: B \rightarrow C$ and $g: A \rightarrow B$. Suppose that $(f \circ g): A \rightarrow C$ is onto. Prove that f is onto.
30. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is onto and that f is one-to-one. Prove that g is onto.
31. Prove the following theorems:
(a) Theorem. Let A be a set and $\left\{B_{i}: i \in I\right\}$ be an indexed family of sets. Then $A \cap \bigcup_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \cap B_{i}\right)$.
(b) Theorem. Let A be a set and $\left\{B_{i}: i \in I\right\}$ be an indexed family of sets. Then $A \cup \bigcap_{i \in I} B_{i}=\bigcap_{i \in I}\left(A \cup B_{i}\right)$.
(c) Theorem. Let A be a set and $\left\{B_{i}: i \in I\right\}$ be an indexed family of sets. Then $A \backslash \bigcap_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \backslash B_{i}\right)$.

Proof Strategies

To PROVE that $\mathcal{A} \subseteq \mathcal{B}$, use the diagram

> Let $x \in \mathcal{A}$.
> \quad Prove $x \in \mathcal{B}$.

To PROVE that two sets \mathcal{A} and \mathcal{B} are equal, use the proof diagram:

$$
\begin{aligned}
& \text { Prove } \mathcal{A} \subseteq \mathcal{B} \\
& \text { Prove } \mathcal{B} \subseteq \mathcal{A} .
\end{aligned}
$$

To PROVE that two sets \mathcal{A} and \mathcal{B} are equal, use the proof diagram:
Let x be arbitrary.
Prove $x \in \mathcal{A} \leftrightarrow x \in \mathcal{B}$.
To PROVE that a function $f: A \rightarrow B$ is One-To-One, use the proof diagram:
Let $a \in A$ and $b \in A$ be arbitrary.
Assume $f(a)=f(b)$
Prove $a=b$.
To PROVE that a function $f: A \rightarrow B$ is Onto, use the proof diagram:
Let $y \in B$ be arbitrary.
Let $x=$ (the value you found).
Prove $f(x)=y$.
Definition. Given two functions $g: A \rightarrow B$ and $f: B \rightarrow C$, one forms the composition function $(f \circ g): A \rightarrow C$ by defining $(f \circ g)(x)=f(g(x))$ for all $x \in A$.
Remark. Let $\left\{C_{i}: i \in I\right\}$ be an indexed family of sets. Then the following statements are true.
(1) $x \in \bigcup_{i \in I} C_{i}$ iff $x \in C_{i}$ for some $i \in I$.
(2) $x \notin \bigcup_{i \in I} C_{i}$ iff $x \notin C_{i}$ for every $i \in I$.
(3) $x \in \bigcap_{i \in I} C_{i}$ iff $x \in C_{i}$ for every $i \in I$.
(4) $x \notin \bigcap_{i \in I} C_{i}$ iff $x \notin C_{i}$ for some $i \in I$.

