MAT 300 - Final Exam Review Problems on Chapters 5 and 6 Final Exam on Monday Dec. 9, 9:40 to 11:00. Bacon 214A

- 1. Prove the following theorems:
 - (a) **Theorem.** $(A \setminus B) \cap (C \setminus B) = (A \cap C) \setminus B$.
 - (b) **Theorem.** $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$
 - (c) **Theorem.** If $A \setminus B \subseteq C$, then $A \setminus C \subseteq B$.
- 2. Define $f: \mathbb{Z} \to \mathbb{Z}$ by f(n) = 3n.
 - (a) Is f one-to-one? Prove it, or provide a counterexample.
 - (b) Is f onto? Prove it, or provide a counterexample.
- 3. Let $A = \{x \in \mathbb{R} : x \neq -1\}$. Consider the function $f: A \to \mathbb{R}$ defined by $f(x) = \frac{2x}{x+1}$. Prove that f is one-to-one.
- 4. Let $A = \{x \in \mathbb{R} : x \neq 2\}$. Prove that the function $f: A \to \mathbb{R}$ defined by $f(x) = \frac{4x}{x-2}$ is not onto.
- 5. Let $A = \{x \in \mathbb{R} : x \neq 2\}$ and let $B = \{y \in \mathbb{R} : y \neq 4\}$. Define the function $f : A \to B$ by $f(x) = \frac{4x}{x-2}$. Prove that f is onto.
- 6. Let $A = \{x \in \mathbb{R} : x \neq 2\}$ and let $B = \{y \in \mathbb{R} : y \neq 4\}$. Prove the function $f : A \to B$ defined by $f(x) = \frac{4x}{x-2}$ is one-to-one.
- 7. Let $a, b \in \mathbb{R}$ with $a \neq 0$ and define the function $f : \mathbb{R} \to \mathbb{R}$ by f(x) = ax + b. Given that f is one-to-one and onto, find a formula for the inverse function $f^{-1} : \mathbb{R} \to \mathbb{R}$.
- 8. Suppose that $f \colon \mathbb{R} \to \mathbb{R}^+$ is one-to-one. Define $g \colon \mathbb{R} \to \mathbb{R}^+$ by $g(x) = (f(x))^2$. Prove that g is one-to-one. (Recall that $\sqrt{x^2} = |x|$.)
- 9. Suppose $f : \mathbb{R} \to \mathbb{R}$ is one-to-one and let $a, b \in \mathbb{R}$ where $a \neq 0$. Define $g : \mathbb{R} \to \mathbb{R}$ by g(x) = af(x) + b. Prove that g is one-to-one.
- 10. Suppose $f : \mathbb{R} \to \mathbb{R}$ is onto and let $a, b \in \mathbb{R}$ where $a \neq 0$. Define $g : \mathbb{R} \to \mathbb{R}$ by g(x) = af(x) + b. Prove that g is onto.
- 11. Let $f: B \to C$ and $g: A \to B$. Suppose that $(f \circ g): A \to C$ is onto. Prove that f is onto.
- 12. Let $g: A \to B$ and $f: B \to C$. Suppose that $(f \circ g): A \to C$ is onto and f is one-to-one. Prove that g is onto.
- 13. Let A, B and C be sets. Prove that if $A \subseteq B$ and $B \cap C = \emptyset$, then $A \subseteq B \setminus C$.
- 14. Let A, B and C be sets. Prove that if $A \setminus B \subseteq C$ and $A \not\subseteq C$, then $A \cap B \neq \emptyset$.
- 15. Suppose $g: A \to B$ and $f: B \to C$ are one-to-one. Prove that $(f \circ g): A \to C$ is one-to-one.
- 16. Suppose that $g: A \to B$ and $f: B \to C$ are onto. Prove that $(f \circ g): A \to C$ is onto.
- 17. Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ is onto. Let $c \in \mathbb{R}$ be non-zero. Define the function $h \colon \mathbb{R} \to \mathbb{R}$ by h(x) = cf(x). Prove that the function h is onto.
- 18. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is one-to-one. Let $c \in \mathbb{R}$ be non-zero. Define the function $h : \mathbb{R} \to \mathbb{R}$ by h(x) = cf(x). Prove that the function h is one-to-one.
- 19. Let A and B be sets. Prove that $B \cup (A \setminus B) = A \cup B$.
- 20. Let A and B be sets. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 21. Let $\{A_i : i \in I\}$ and $\{B_i : i \in I\}$ be indexed families of sets with the same indexed set I. Suppose $A_i \subseteq B_i$ for all $i \in I$. Prove that $\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} B_i$.
- 22. Let $\{A_i : i \in I\}$ and $\{B_i : i \in I\}$ be indexed families of sets with the same indexed set I. Suppose $A_i \subseteq B_i$ for all $i \in I$. Prove that $\bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} B_i$.

- 23. Let $\{A_i : i \in I\}$ and $\{B_j : j \in J\}$ be indexed families of sets. Suppose that there is an $i_0 \in I$ such that $A_{i_0} \subseteq B_j$ for all $j \in J$. Prove that $\bigcap A_i \subseteq \bigcap B_j$.
- 24. Let $\{A_i : i \in I\}$ be an indexed family of sets. Prove that $X \subseteq \bigcap_{i \in I} A_i$ if and only if $X \subseteq A_i$ for all $i \in I$.
- 25. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is onto. Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = (f(x))^2$. Show that g is not one-to-one.
- 26. Let $a, b \in \mathbb{R}$. Define $q: \mathbb{R} \to \mathbb{R}$ by q(x) = ax + b. Show that if q is one-to-one, then $a \neq 0$.
- 27. Let $g: A \to B$ and $f: B \to C$. Suppose that $(f \circ g): A \to C$ is one-to-one. Prove that g is one-to-one.
- 28. Let $g: A \to B$ and $f: B \to C$. Suppose that $(f \circ g): A \to C$ is one-to-one and that g is onto. Prove that f is one-to-one.
- 29. Let $f: B \to C$ and $q: A \to B$. Suppose that $(f \circ q): A \to C$ is onto. Prove that f is onto.
- 30. Let $q: A \to B$ and $f: B \to C$. Suppose that $(f \circ q): A \to C$ is onto and that f is one-to-one. Prove that q is onto.
- 31. Prove the following theorems:
 - (a) **Theorem.** Let A be a set and $\{B_i : i \in I\}$ be an indexed family of sets. Then $A \cap \bigcup B_i = \bigcup (A \cap B_i)$.
 - (b) **Theorem.** Let A be a set and $\{B_i : i \in I\}$ be an indexed family of sets. Then $A \cup \bigcap_{i \in I} B_i = \bigcap_{i \in I} (A \cup B_i)$.
 - (c) **Theorem.** Let A be a set and $\{B_i : i \in I\}$ be an indexed family of sets. Then $A \setminus \bigcap_{i \in I} B_i = \bigcup_{i \in I} (A \setminus B_i)$.

Proof Strategies

To PROVE that $\mathcal{A} \subseteq \mathcal{B}$, use the diagram

Let
$$x \in \mathcal{A}$$
.
Prove $x \in \mathcal{B}$.

To PROVE that two sets \mathcal{A} and \mathcal{B} are equal, use the proof diagram:

Prove
$$\mathcal{A} \subseteq \mathcal{B}$$

Prove $\mathcal{B} \subseteq \mathcal{A}$.

To PROVE that two sets \mathcal{A} and \mathcal{B} are equal, use the proof diagram:

Let
$$x$$
 be arbitrary.
Prove $x \in \mathcal{A} \leftrightarrow x \in \mathcal{B}$.

To PROVE that a function $f: A \to B$ is One-To-One, use the proof diagram:

Let $a \in A$ and $b \in A$ be arbitrary. Assume f(a) = f(b)Prove a = b.

To PROVE that a function $f: A \to B$ is Onto, use the proof diagram:

Let
$$y \in B$$
 be arbitrary.
Let $x = ($ the value you found).
Prove $f(x) = y$.

Definition. Given two functions $q: A \to B$ and $f: B \to C$, one forms the composition function $(f \circ q): A \to C$ by defining $(f \circ g)(x) = f(g(x))$ for all $x \in A$.

Remark. Let $\{C_i : i \in I\}$ be an indexed family of sets. Then the following statements are true.

- (1) $x \in \bigcup_{i \in I} C_i$ iff $x \in C_i$ for some $i \in I$.
- (2) $x \notin \bigcup_{i \in I} C_i$ iff $x \notin C_i$ for every $i \in I$. (3) $x \in \bigcap_{i \in I} C_i$ iff $x \in C_i$ for every $i \in I$.
- (4) $x \notin \bigcap_{i \in I} C_i$ iff $x \notin C_i$ for some $i \in I$.