1. Prove the following theorems:
(a) Theorem. $(A \backslash B) \cap(C \backslash B)=(A \cap C) \backslash B$.

Proof. Let x be given. We prove $x \in(A \backslash B) \cap(C \backslash B)$ iff $x \in(A \cap C) \backslash B$, as follows:

$$
\begin{array}{lll}
x \in(A \backslash B) \cap(C \backslash B) & \text { iff } x \in(A \backslash B) \wedge x \in(C \backslash B) & \\
& \text { iff }(x \in A \wedge x \notin B) \wedge(x \in C \wedge x \notin B) & \\
& \text { by the definition of } \cap \\
& \text { iff }(x \in A \wedge x \in C) \wedge(x \notin B \wedge x \notin B) & \text { by comm. \& assoc. logic laws } \\
& \text { iff }(x \in A \wedge x \in C) \wedge x \notin B & \\
& \text { iff }(x \in A \cap C) \wedge x \notin B & \text { by idempotent logic law } \\
& \text { iff } x \in(A \cap C) \backslash B &
\end{array}
$$

Therefore, $(A \backslash B) \cap(C \backslash B)=(A \cap C) \backslash B$.
(b) Theorem. $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$.

Proof. Let A and B be sets. [We will apply the double subset strategy.]
(\subseteq). Let $x \in(A \cup B) \backslash(A \cap B)$. So $x \in(A \cup B)$ and $x \notin(A \cap B)$. Thus, we have the two items:

$$
\begin{align*}
& \text { either } x \in A \text { or } x \in B, \tag{1}\\
& \text { either } x \notin A \text { or } x \notin B . \tag{2}
\end{align*}
$$

By (1), we have that either $x \in A$ or $x \in B \cdot{ }^{1}$ We consider these two cases separately.
Case 1. If $x \in A$, then (2) implies ${ }^{2}$ that $x \notin B$. Hence, $x \in A \backslash B$. Therefore, $x \in(A \backslash B) \cup(B \backslash A)$.
Case 2. If $x \in B$, then (2) implies that $x \notin A$. Hence, $x \in B \backslash A$. Thus, $x \in(A \backslash B) \cup(B \backslash A)$.
(\supseteq). Let $x \in(A \backslash B) \cup(B \backslash A)$. Thus, either $x \in(A \backslash B)$ or $x \in(B \backslash A)$. We consider these two cases separately.
Case 1. If $x \in(A \backslash B)$, then $x \in A$ and $x \notin B$. Hence, $x \in(A \cup B)$ and $x \notin(A \cap B)$. Therefore, $x \in(A \cup B) \backslash(A \cap B)$.
Case 2. If $x \in(B \backslash A)$, then $x \in B$ and $x \notin A$. Hence, $x \in(A \cup B)$ and $x \notin(A \cap B)$. Therefore, $x \in(A \cup B) \backslash(A \cap B)$.
Therefore, $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$.
(c) Theorem. If $A \backslash B \subseteq C$, then $A \backslash C \subseteq B$.

Proof. Assume that ($\mathbf{\Delta}) A \backslash B \subseteq C$. We prove that $A \backslash C \subseteq B$. Let $x \in A \backslash C$. Thus, $x \in A$ and $x \notin C$. We must prove that $x \in B$. Suppose, for a contradiction, that $x \notin B$. Thus, $x \in A$ and $x \notin B$. So $x \in A \backslash B$. So ($\mathbf{\Delta}$) implies that $x \in C$ and this contradicts to fact that $x \notin C$. Hence, we must have that $x \in B$. Therefore, $A \backslash C \subseteq B$.
2. Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(n)=3 n$.
(a) Is f one-to-one? Prove it, or provide a counterexample.
(b) Is f onto? Prove it, or provide a counterexample.
3. Let $A=\{x \in \mathbb{R}: x \neq-1\}$. Consider the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=\frac{2 x}{x+1}$. Prove that f is one-to-one.

[^0]4. Let $A=\{x \in \mathbb{R}: x \neq 2\}$. Prove that the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=\frac{4 x}{x-2}$ is not onto.
5. Let $A=\{x \in \mathbb{R}: x \neq 2\}$ and let $B=\{y \in \mathbb{R}: y \neq 4\}$. Define the function $f: A \rightarrow B$ by $f(x)=\frac{4 x}{x-2}$. Prove that f is onto.
6. Let $A=\{x \in \mathbb{R}: x \neq 2\}$ and let $B=\{y \in \mathbb{R}: y \neq 4\}$. Prove the function $f: A \rightarrow B$ defined by $f(x)=\frac{4 x}{x-2}$ is one-to-one.
7. Let $a, b \in \mathbb{R}$ with $a \neq 0$ and define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=a x+b$. Given that f is one-to-one and onto, find a formula for the inverse function $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}$.
Solution. Solving $a x+b=y$ for x, we obtain $x=\frac{y-b}{a}$. Therefore, $f^{-1}(y)=\frac{y-b}{a}$ is a formula for f^{-1}.
8. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is one-to-one. Define $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$by $g(x)=(f(x))^{2}$. Prove that g is one-to-one. (Recall that $\sqrt{x^{2}}=|x|$.)

Proof. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is one-to-one. We shall prove that the function $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $g(x)=(f(x))^{2}$ is one-to-one. Let $x, y \in \mathbb{R}$. Assume that (1) $g(x)=g(y)$. We shall prove that $x=y$. First, we shall prove that $f(x)=f(y)$ as follows:

$$
\begin{aligned}
g(x) & =g(y) & & \text { by }(1) \\
(f(x))^{2} & =(f(y))^{2} & & \text { by the definition of } g \\
\sqrt{(f(x))^{2}} & =\sqrt{(f(y))^{2}} & & \text { by taking the square root of both sides } \\
|f(x)| & =|f(y)| & & \text { because } \sqrt{z^{2}}=|z| \\
f(x) & =f(y) & & \text { because } f(x)>0 \text { and } f(y)>0 .
\end{aligned}
$$

Therefore, $f(x)=f(y)$. Since f is one-to-one, we now conclude that $x=y$.
9. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one and let $a, b \in \mathbb{R}$ where $a \neq 0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=a f(x)+b$. Prove that g is one-to-one.
10. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto and let $a, b \in \mathbb{R}$ where $a \neq 0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=a f(x)+b$. Prove that g is onto.
11. Let $f: B \rightarrow C$ and $g: A \rightarrow B$. Suppose that $(f \circ g): A \rightarrow C$ is onto. Prove that f is onto.

Proof. Let $f: B \rightarrow C$ and $g: A \rightarrow B$. Assume $(f \circ g): A \rightarrow C$ is onto. We shall prove $f: B \rightarrow C$ is onto. Let $y \in C$. Since $(f \circ g): A \rightarrow C$ is onto and $y \in C$, there is an $a \in A$ such that $(1)(f \circ g)(a)=y$. Let $x=g(a)$. Clearly, $x \in B$. We shall prove $f(x)=y$ as follows:

$$
\begin{aligned}
f(x) & =f(g(a)) & & \text { because } x=g(a) \\
& =(f \circ g)(a) & & \text { by the definition of composition } \\
& =y & & \text { by }(1)
\end{aligned}
$$

Therefore, $f(x)=y$ and so, f is onto.
12. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is onto and f is one-to-one. Prove that g is onto.

Proof. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Assume $(f \circ g): A \rightarrow C$ is onto and f is one-to-one. We shall prove $g: A \rightarrow B$ is onto. Let $y \in B$. Clearly, $f(y) \in C$. Since $(f \circ g): A \rightarrow C$ is onto and $f(y) \in C$, there is an $a \in A$ such that $(f \circ g)(a)=f(y)$. We shall prove that $g(a)=y$, Since $(f \circ g)(a)=f(y)$, we see that

$$
f(g(a))=f(y)
$$

Because f is one-to-one, we conclude that $g(a)=y$ and thus, g is onto.
13. Let A, B and C be sets. Prove that if $A \subseteq B$ and $B \cap C=\emptyset$, then $A \subseteq B \backslash C$.

Proof. Let A, B and C be sets. Assume that

$$
\begin{align*}
& A \subseteq B \tag{1}\\
& B \cap C=\emptyset . \tag{2}
\end{align*}
$$

We shall prove that $A \subseteq B \backslash C$. Let $x \in A$. Thus, $x \in B$ by (1). Since $B \cap C=\emptyset$, we conclude that $x \notin C$. Since $x \in B$ and $x \notin C$, we have that $x \in B \backslash C$.
14. Let A, B and C be sets. Prove that if $A \backslash B \subseteq C$ and $A \nsubseteq C$, then $A \cap B \neq \emptyset$.

Proof. Let A, B and C be sets. Assume that

$$
\begin{align*}
& A \backslash B \subseteq C \tag{1}\\
& A \nsubseteq C . \tag{2}
\end{align*}
$$

We shall prove that $A \cap B \neq \emptyset$. Since $A \nsubseteq C$, there is an $x \in A$ such that $x \notin C$. We shall prove that $x \in B$. Suppose, for a contradiction, that $x \notin B$. Then $x \in A \backslash B$. By (1) we have that $x \in C$ which contradicts the fact that $x \notin C$. Hence, $x \in B$. Because $x \in A$ and $x \in B$, we see that $x \in A \cap B$. Therefore, $A \cap B \neq \emptyset$.
15. Suppose $g: A \rightarrow B$ and $f: B \rightarrow C$ are one-to-one. Prove that $(f \circ g): A \rightarrow C$ is one-to-one.
16. Suppose that $g: A \rightarrow B$ and $f: B \rightarrow C$ are onto. Prove that $(f \circ g): A \rightarrow C$ is onto.

Proof. Assume $g: A \rightarrow B$ and $f: B \rightarrow C$ are onto. We prove that the function $(f \circ g): A \rightarrow C$ is onto. Let $z \in C$. Since $f: B \rightarrow C$ is onto and $z \in C$, there is a $y \in B$ such that $f(y)=z$. Because $y \in B$ and $g: A \rightarrow B$ is onto, there is an $x \in A$ such that $g(x)=y$. We will show that $(f \circ g)(x)=z$ as follows:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) & & \text { by definition of composition } \\
& =f(y) & & \text { because } g(x)=y \\
& =z & & \text { because } f(y)=z .
\end{aligned}
$$

Therefore, $f \circ g: A \rightarrow C$ is onto.
17. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto. Let $c \in \mathbb{R}$ be non-zero. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=c f(x)$. Prove that the function h is onto.

Proof. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto and $c \neq 0$. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $h(x)=c f(x)$. We shall prove that h is onto. Let $y \in R$. Since $\frac{y}{c} \in \mathbb{R}$ and f is onto, there is an $x \in \mathbb{R}$ such that $(\star) f(x)=\frac{y}{c}$. We prove that $h(x)=y$ as follows:

$$
\begin{aligned}
h(x) & =c f(x) & & \text { by the definition of } h \\
& =c \cdot \frac{y}{c} & & \text { by }(\star) \\
& =y & & \text { by algebra. }
\end{aligned}
$$

Therefore, $h(x)=y$ and h is onto.
18. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one. Let $c \in \mathbb{R}$ be non-zero. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=c f(x)$. Prove that the function h is one-to-one.

Proof. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one and $c \neq 0$. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $h(x)=c f(x)$. We shall prove that h is one-to-one. Let $x, y \in R$. Assume that $h(x)=h(y)$. We prove that $x=y$ as follows:

\[

\]

Therefore, h is one-to-one.
19. Let A and B be sets. Prove that $B \cup(A \backslash B)=A \cup B$.

Proof. Let A and B be sets. Let x be given. We prove $x \in B \cup(A \backslash B)$ iff $x \in A \cup B$, as follows:

$$
\begin{array}{lll}
x \in B \cup(A \backslash B) & \text { iff } x \in B \vee x \in(A \backslash B) & \text { by the definition of } \cap \\
& \text { iff } x \in B \vee(x \in A \wedge x \notin B) & \text { by the definition of } \backslash \\
& \text { iff }(x \in B \vee x \in A) \wedge(x \in B \vee x \notin B) & \text { by logical distribution } \\
& \text { iff } x \in B \vee x \in A & \text { by the tautology law } \\
& \text { iff } x \in A \vee x \in B & \text { by the logical commutativity } \\
& \text { iff } x \in A \cup B & \text { by the definition of } \cup .
\end{array}
$$

Therefore, $B \cup(A \backslash B)=A \cup B$.
20. Let A and B be sets. Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proof. Let x be given. We prove that $x \in A \cap(B \cup C)$ if and only if $x \in(A \cap B) \cup(A \cap C)$, as follows:

$$
\begin{array}{lll}
x \in A \cap(B \cup C) & \text { iff } x \in A \wedge x \in(B \cup C) & \text { by the definition of } \cap \\
& \text { iff } x \in A \wedge(x \in B \vee x \in C) & \text { by the definition of } \cup \\
& \text { iff }(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C) & \text { by logical distributivity } \\
& \text { iff } x \in A \cap B \vee x \in A \cap C & \\
& \text { iff } x \in(A \cap B) \cup(A \cap C) &
\end{array}
$$

Therefore, $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
21. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{i}: i \in I\right\}$ be indexed families of sets with the same indexed set I. Suppose $A_{i} \subseteq B_{i}$ for all $i \in I$. Prove that $\bigcup_{i \in I} A_{i} \subseteq \bigcup_{i \in I} B_{i}$.
22. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{i}: i \in I\right\}$ be indexed families of sets with the same indexed set I. Suppose $A_{i} \subseteq B_{i}$ for all $i \in I$. Prove that $\bigcap_{i \in I} A_{i} \subseteq \bigcap_{i \in I} B_{i}$.
23. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{j}: j \in J\right\}$ be indexed families of sets. Suppose that there is an $i_{0} \in I$ such that $A_{i_{0}} \subseteq B_{j}$ for all $j \in J$. Prove that $\bigcap_{i \in I} A_{i} \subseteq \bigcap_{j \in J} B_{j}$.
24. Let $\left\{A_{i}: i \in I\right\}$ be an indexed family of sets. Prove that $X \subseteq \bigcap_{i \in I} A_{i}$ if and only if $X \subseteq A_{i}$ for all $i \in I$.
25. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is onto. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=(f(x))^{2}$. Show that g is not one-to-one.
26. Let $a, b \in \mathbb{R}$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=a x+b$. Show that if g is one-to-one, then $a \neq 0$.
27. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is one-to-one. Prove that g is one-to-one.
28. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is one-to-one and that g is onto. Prove that f is one-to-one.

Proof. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Assume that $(f \circ g): A \rightarrow C$ is one-to-one and g is onto. To prove that f is one-to-one, let $x \in B$ and $y \in B$. Assume that $f(x)=f(y)$. Since $g: A \rightarrow B$ is onto, there is a $c \in A$ and $d \in A$ such that $g(c)=x$ and $g(d)=y$. Therefore,

$$
f(g(c))=f(x) \text { and } f(g(d))=f(y)
$$

That is, by the definition of composition, we have that

$$
(f \circ g)(c)=f(x) \text { and }(f \circ g)(d)=f(y)
$$

Since $f(x)=f(y)$, we conclude that

$$
(f \circ g)(c)=(f \circ g)(d) .
$$

Because, $(f \circ g): A \rightarrow C$ is one-to-one, we infer that $c=d$. Therefore, $g(c)=g(d)$. As $g(c)=x$ and $g(d)=y$, we have that $x=y$. Therefore, f is one-to-one.
29. Let $f: B \rightarrow C$ and $g: A \rightarrow B$. Suppose that $(f \circ g): A \rightarrow C$ is onto. Prove that f is onto.
30. Let $g: A \rightarrow B$ and $f: B \rightarrow C$. Suppose that $(f \circ g): A \rightarrow C$ is onto and that f is one-to-one. Prove that g is onto.
31. Prove the following theorems:
(a) Theorem. Let A be a set and $\left\{B_{i}: i \in I\right\}$ be an indexed family of sets. Then $A \cap \bigcup_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \cap B_{i}\right)$.

Proof. Suppose that A is a set and that $\left\{B_{i}: i \in I\right\}$ is an indexed family of sets. Let x be given. We shall prove that $x \in A \cap \bigcup_{i \in I} B_{i}$ if and only if $x \in \bigcup_{i \in I}\left(A \cap B_{i}\right)$ as follows:

$$
\begin{array}{lll}
x \in A \cap \bigcup_{i \in I} B_{i} \text { iff } x \in A \text { and } x \in \bigcup_{i \in I} B_{i} & \text { by the definition of } \cap \\
& \text { iff } x \in A \text { and } x \in B_{i} \text { for some } i \in I & \text { by the definition of } \bigcup \\
& \text { iff } x \in A \cap B_{i} \text { for some } i \in I & \text { by the definition of } \cap \\
& \text { iff } x \in \bigcup_{i \in I}\left(A \cap B_{i}\right) & \text { by the definition of } \bigcup .
\end{array}
$$

Therefore, $A \cap \bigcup_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \cap B_{i}\right)$.
(b) Theorem. Let A be a set and $\left\{B_{i}: i \in I\right\}$ be an indexed family of sets. Then $A \cup \bigcap_{i \in I} B_{i}=\bigcap_{i \in I}\left(A \cup B_{i}\right)$.

Proof. Suppose that A is a set and that $\left\{B_{i}: i \in I\right\}$ is an indexed family of sets. Let x be given. We shall prove that $x \in A \cup \bigcap_{i \in I} B_{i}$ if and only if $x \in \bigcap_{i \in I}\left(A \cup B_{i}\right)$ as follows:

$$
x \in A \cup \bigcap_{i \in I} B_{i} \text { iff } x \in A \text { or } x \in \bigcap_{i \in I} B_{i} \quad \text { by the definition of } \cup 1 \text { (ffr } \begin{array}{ll}
\quad \text { iff } x \in A \text { or } x \in B_{i} \text { for all } i \in I & \text { by the definition of } \bigcap \\
\text { iff } x \in A \cup B_{i} \text { for all } i \in I & \text { by the definition of } \cup \\
& \text { iff } x \in \bigcap_{i \in I}\left(A \cup B_{i}\right)
\end{array} \quad \text { by the definition of } \bigcap .
$$

Therefore, $A \cup \bigcap_{i \in I} B_{i}=\bigcap_{i \in I}\left(A \cup B_{i}\right)$.
(c) Theorem. Let A be a set and $\left\{B_{i}: i \in I\right\}$ be an indexed family of sets. Then $A \backslash \bigcap_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \backslash B_{i}\right)$.

Proof. Suppose that A is a set and that $\left\{B_{i}: i \in I\right\}$ is an indexed family of sets. Let x be given. We shall prove that $x \in A \backslash \bigcap_{i \in I} B_{i}$ if and only if $x \in \bigcup_{i \in I}\left(A \backslash B_{i}\right)$ as follows:

$$
\begin{array}{lll}
x \in A \backslash \bigcap_{i \in I} B_{i} \text { iff } x \in A \text { and } x \notin \bigcap_{i \in I} B_{i} & \text { by the definition of } \backslash \\
& \text { iff } x \in A \text { and } x \notin B_{i} \text { for some } i \in I & \text { by the definition of } \bigcap \\
& \text { iff } x \in A \backslash B_{i} \text { for some } i \in I & \text { by the definition of } \backslash \\
& \text { iff } x \in \bigcup_{i \in I}\left(A \backslash B_{i}\right) & \text { by the definition of } \bigcup .
\end{array}
$$

Therefore, $A \backslash \bigcap_{i \in I} B_{i}=\bigcup_{i \in I}\left(A \backslash B_{i}\right)$.

Proof Strategies

To PROVE that $\mathcal{A} \subseteq \mathcal{B}$, use the diagram
Let $x \in \mathcal{A}$.
Prove $x \in \mathcal{B}$.
To PROVE that two sets \mathcal{A} and \mathcal{B} are equal, use the proof diagram:
Prove $\mathcal{A} \subseteq \mathcal{B}$
Prove $\mathcal{B} \subseteq \mathcal{A}$.

To PROVE that two sets \mathcal{A} and \mathcal{B} are equal, use the proof diagram:

$$
\text { Let } x \text { be arbitrary. }
$$

Prove $x \in \mathcal{A} \leftrightarrow x \in \mathcal{B}$.

To PROVE that a function $f: A \rightarrow B$ is One-To-One, use the proof diagram:
Let $a \in A$ and $b \in A$ be arbitrary.
Assume $f(a)=f(b)$
Prove $a=b$.

To PROVE that a function $f: A \rightarrow B$ is Onto, use the proof diagram:
Let $y \in B$ be arbitrary.
Let $x=($ the value you found $)$.
Prove $f(x)=y$.
Definition. Given two functions $g: A \rightarrow B$ and $f: B \rightarrow C$, one forms the composition function $(f \circ g): A \rightarrow C$ by defining $(f \circ g)(x)=f(g(x))$ for all $x \in A$.

Remark. Let $\left\{C_{i}: i \in I\right\}$ be an indexed family of sets. Then the following statements are true.
(1) $x \in \bigcup_{i \in I} C_{i}$ iff $x \in C_{i}$ for some $i \in I$.
(2) $x \notin \bigcup_{i \in I} C_{i}$ iff $x \notin C_{i}$ for every $i \in I$.
(3) $x \in \bigcap_{i \in I} C_{i}$ iff $x \in C_{i}$ for every $i \in I$.
(4) $x \notin \bigcap_{i \in I} C_{i}$ iff $x \notin C_{i}$ for some $i \in I$.

[^0]: ${ }^{1}$ We are assuming an 'or' statement. See Assumption Strategy 3.6.3 on page 86 of text.
 ${ }^{2}$ By Disjunctive Syllogism.

