MAT 300 - Final Exam Review Problems on Chapters 5 and 6
Final Exam on Monday Dec. 9, 9:40 to 11:00. Bacon 214A

1. Prove the following theorems:
(a) Theorem. (A\B)N(C\B)=(ANQC)\ B.
Proof. Let x be given. We prove z € (A\ B)N (C\ B) iff z € (AN C) \ B, as follows:

re(A\B)Nn(C\B)iffx € (A\B)Az € (C\ B) by the definition of N
iff (e ANz ¢ B)AN(x € CAx¢B) by the definition of \
iff(te ANzeC)AN(x¢ BNz ¢ B) by comm. & assoc. logic laws

if (te ANzeC)N2x ¢ B by idempotent logic law
iffxte ANC)ANz ¢ B by the definition of N
iffre (ANC)\ B by the definition of \.
Therefore, (A\ B)N(C\ B)=(ANnC)\ B. O

(b) Theorem. (AUB)\ (ANB)=(A\B)U(B\A).

Proof. Let A and B be sets. [We will apply the double subset strategy.]
(©). Let € (AUB)\ (ANB). Sox € (AUB) and x ¢ (AN B). Thus, we have the two items:

either v € Aor z € B, (1)
either x ¢ Aor z ¢ B. (2)

By (1), we have that either x € A or z € B.! We consider these two cases separately.

Case 1. If z € A, then (2) implies? that = ¢ B. Hence, z € A\ B. Therefore, z € (A\ B)U (B \ A).
Case 2. If z € B, then (2) implies that « ¢ A. Hence, z € B\ A. Thus, z € (A\ B)U (B \ A).

(D). Let z € (A\ B)U (B \ A). Thus, either z € (A\ B) or z € (B\ A). We consider these two cases
separately.

Case 1. If x € (A\ B), then 2 € A and = ¢ B. Hence, z € (AU B) and = ¢ (AN B). Therefore,
ze(AUB)\ (ANB).

Case 2. If x € (B\ A), then x € B and z ¢ A. Hence, x € (AU B) and = ¢ (AN B). Therefore,
x € (AUB)\ (AN B).

Therefore, (AUB)\ (ANB)=(A\B)U(B\ A). O
(¢c) Theorem. If A\ BC C, then A\ C C B.

Proof. Assume that (A) A\ B C C. We prove that A\C C B. Let z € A\ C. Thus, x € Aand x ¢ C.
We must prove that x € B. Suppose, for a contradiction, that © ¢ B. Thus, x € A and = ¢ B. So
x € A\ B. So (A) implies that € C and this contradicts to fact that ¢ C. Hence, we must have
that € B. Therefore, A\ C C B. O

2. Define f: Z — Z by f(n) = 3n.

(a) Is f one-to-one? Prove it, or provide a counterexample.
(b) Is f onto? Prove it, or provide a counterexample.

3. Let A= {x € R:x # —1}. Consider the function f: A — R defined by f(z) = f—fl Prove that f is
one-to-one.

!We are assuming an ‘or’ statement. See Assumption Strategy 3.6.3 on page 86 of text.
2By Disjunctive Syllogism.
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Let A= {x € R:x # 2}. Prove that the function f: A — R defined by f(x) = 14%2 is not onto.

Let A={x € R:x # 2} and let B = {y € R:y # 4}. Define the function f: A — B by f(x) = %. Prove
that f is onto.

Let A={z € R:z #2} and let B = {y € R:y # 4}. Prove the function f: A — B defined by f(z) = 2%
is one-to-one.
Let a,b € R with a # 0 and define the function f: R — R by f(z) = az +b. Given that f is one-to-one and

onto, find a formula for the inverse function f~!': R — R.

Solution. Solving ax + b = y for x, we obtain z = yT_b. Therefore, f~1(y) = yT_b is a formula for f1.

Suppose that f: R — Rt is one-to-one. Define g: R — R* by g(x) = (f(x))?. Prove that g is one-to-one.
(Recall that V2 = |z|.)

Proof. Assume that f: R — RT is one-to-one. We shall prove that the function g: R — R* defined by
g(z) = (f(x))? is one-to-one. Let x,y € R. Assume that (1) g(x) = g(y). We shall prove that z = y. First,
we shall prove that f(z) = f(y) as follows:

9(x) = 9(y) by (1)
2 ())? by the definition of g
V()2 =/(f(y))? by taking the square root of both sides
[f (@) = [f ()] because V2% = 2|
f(z) = f(y) because f(z) > 0 and f(y) > 0.

Therefore, f(z) = f(y). Since f is one-to-one, we now conclude that z = y. O

. Suppose f: R — R is one-to-one and let a,b € R where a # 0. Define g: R — R by g(x) = af(z) + b. Prove

that g is one-to-one.

Suppose f: R — R is onto and let a,b € R where a # 0. Define g: R — R by g(z) = af(x) 4+ b. Prove that
g is onto.

Let f: B— C and g: A — B. Suppose that (f og): A — C is onto. Prove that f is onto.

Proof. Let f: B — C and g: A — B. Assume (fog): A — C is onto. We shall prove f: B — C is onto.
Let y € C. Since (fog): A — C is onto and y € C, there is an a € A such that (1) (f o g)(a) = y. Let
x = g(a). Clearly, z € B. We shall prove f(z) =y as follows:

f(z) = f(g(a))  because z = g(a)
= (fog)(a) by the definition of composition

=y by (1).

Therefore, f(z) =y and so, f is onto. O

Let g: A — B and f: B — C. Suppose that (fog): A — C is onto and f is one-to-one. Prove that g is
onto.

Proof. Let g: A — B and f: B — C. Assume (fog): A — C is onto and f is one-to-one. We shall prove

g: A — Bisonto. Let y € B. Clearly, f(y) € C. Since (fog): A — C is onto and f(y) € C, there is an
a € A such that (f og)(a) = f(y). We shall prove that g(a) =y, Since (f o g)(a) = f(y), we see that

Because f is one-to-one, we conclude that g(a) = y and thus, g is onto. O
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Let A, B and C be sets. Prove that if A C B and BNC = (), then A C B\ C.

Proof. Let A, B and C be sets. Assume that
ACB (1)
BNC =0. (2)
We shall prove that A C B\ C. Let € A. Thus, 2 € B by (1). Since BN C = (), we conclude that x ¢ C.
Since x € B and = ¢ C, we have that z € B\ C. O

Let A, B and C be sets. Prove that if A\ B C C and A € C, then AN B # ().

Proof. Let A, B and C' be sets. Assume that

A\BCC (1)
AgC. (2)
We shall prove that AN B # (). Since A € C, there is an x € A such that 2 ¢ C. We shall prove that z € B.

Suppose, for a contradiction, that x ¢ B. Then z € A\ B. By (1) we have that € C' which contradicts the
fact that « ¢ C. Hence, x € B. Because € A and = € B, we see that x € AN B. Therefore, ANB # (. O

Suppose g: A — B and f: B — C are one-to-one. Prove that (f og): A — C is one-to-one.
Suppose that g: A — B and f: B — C are onto. Prove that (fog): A — C is onto.

Proof. Assume g: A — B and f: B — C are onto. We prove that the function (f og): A — C is onto.
Let z € C. Since f: B — C is onto and z € C, there is a y € B such that f(y) = z. Because y € B and
g: A — B is onto, there is an x € A such that g(x) = y. We will show that (f o g)(z) = z as follows:
(fog)(z)= f(g(x)) Dby definition of composition
— f(y)  because g(z) = y

=z because f(y) = z.

Therefore, fog: A — C is onto. O

Suppose that f: R — R is onto. Let ¢ € R be non-zero. Define the function h: R — R by h(z) = cf(z).
Prove that the function h is onto.

Proof. Suppose that f: R — R is onto and ¢ # 0. Let h: R — R be defined by h(z) = ¢f(x). We shall prove
that h is onto. Let y € R. Since £ € R and f is onto, there is an € R such that (x) f(z) = £. We prove
that h(z) = y as follows:

h(z) = cf(xz) by the definition of h
by (x)
=y by algebra.
Therefore, h(z) =y and h is onto. O

Suppose that f: R — R is one-to-one. Let ¢ € R be non-zero. Define the function h: R — R by h(z) = cf(x).
Prove that the function h is one-to-one.
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Proof. Suppose that f: R — R is one-to-one and ¢ # 0. Let h: R — R be defined by h(z) = c¢f(x). We shall
prove that h is one-to-one. Let z,y € R. Assume that h(z) = h(y). We prove that z = y as follows:

h(z) = h(y) = cf(z) =cf(y) by the definition of h
= f(z) = f(y) because ¢ # 0

== =y since f is one-to-one.

Therefore, h is one-to-one. O
Let A and B be sets. Prove that BU(A\ B) = AU B.

Proof. Let A and B be sets. Let x be given. We prove z € BU (A \ B) iff z € AU B, as follows:

re€BU(A\B)iffxre BVze (A\B) by the definition of N
ifre BV(re ANz ¢ B) by the definition of \
iff (xe BVvee A)A(x € BVx ¢ B) by logical distribution
iffreBvzxeA by the tautology law
iffre AvxeB by the logical commutativity
iffre AUB by the definition of U.
Therefore, BU(A\ B) = AU B. O

Let A and B be sets. Prove that AN (BUC) =(ANB)U(ANC).

Proof. Let z be given. We prove that z € AN (BUC) if and only if z € (AN B)U (AN C), as follows:

re AN(BUQC)iffze ANz e (BUCQ) by the definition of N
ifre AN(zxe BVzel) by the definition of U
iff ze ANzeB)V(re ANz eC) by logical distributivity
iffre ANBvaxe AnC by the definition of N
ifre (ANB)U(ANC) by the definition of U.
Therefore, AN (BUC)=(ANB)U(ANC). O

Let {A; :i € I} and {B; : i € I} be indexed families of sets with the same indexed set I. Suppose A; C B;
for all i € I. Prove that |J 4; C |J B;.

i€l i€l
Let {A; :i €I} and {B;:i € I'} be indexed families of sets with the same indexed set I. Suppose A; C B;
for all 4 € I. Prove that (] 4; C () B;.

iel el
Let {A; : i € I} and {B; : j € J} be indexed families of sets. Suppose that there is an ig € I such that
Aio - Bj for all] € J. Prove that m A; C ﬂ Bj.

icl jed
Let {A; : ¢ € I} be an indexed family of sets. Prove that X C [ 4; if and only if X C A, for all ¢ € I.
icl

Suppose that f: R — R is onto. Define g: R — R by g(z) = (f(x))2. Show that g is not one-to-one.
Let a,b € R. Define g: R — R by g(x) = ax + b. Show that if g is one-to-one, then a # 0.
Let g: A— B and f: B — C. Suppose that (f og): A — C is one-to-one. Prove that g is one-to-one.

Let g: A— B and f: B — C. Suppose that (f og): A — C is one-to-one and that g is onto. Prove that f
is one-to-one.



Proof. Let g: A — B and f: B — C. Assume that (f og): A — C is one-to-one and g is onto. To prove
that f is one-to-one, let z € B and y € B. Assume that f(x) = f(y). Since g: A — B is onto, there is a
c € A and d € A such that g(c¢) = = and g(d) = y. Therefore,

flg(c)) = f(x) and f(g(d)) = f(y);

That is, by the definition of composition, we have that

(fog)(e) = f(x) and (f o g)(d) = f(y).
Since f(x) = f(y), we conclude that
(fog)(e) = (fog)(d).

Because, (fog): A — C is one-to-one, we infer that ¢ = d. Therefore, g(c) = g(d). As g(c) = = and g(d) =y,
we have that £ = y. Therefore, f is one-to-one. O

29. Let f: B— C and g: A — B. Suppose that (f og): A — C is onto. Prove that f is onto.

30. Let g: A — B and f: B — C. Suppose that (f og): A — C is onto and that f is one-to-one. Prove that g
is onto.

31. Prove the following theorems:

(a) Theorem. Let A be a set and {B; : ¢ € I} be an indexed family of sets. Then AN |J B; = |J(ANB,).
i€l i€l

Proof. Suppose that A is a set and that {B; : i € I'} is an indexed family of sets. Let x be given. We
shall prove that z € AN |J B; if and only if z € |J (AN B;) as follows:

el el
xEAﬁUBiiﬁxEAandeUBi by the definition of N
el el

iff z € Aand x € B; for some i € I by the definition of U

iff z € AN B; for some i € I by the definition of N
iff z € U(A N B;) by the definition of U
el
Therefore, AN |J B; = J(AN B;). O

i€l i€l

(b) Theorem. Let A be a set and {B; : i € I} be an indexed family of sets. Then AU (| B; = (| (AU B;).
i€l el

Proof. Suppose that A is a set and that {B; : i € I} is an indexed family of sets. Let x be given. We
shall prove that x € AU [ B; if and only if x € () (A U B;) as follows:

el el
mGAUﬂBiiff:cerrweﬂBi by the definition of U

iel 13
iff t€ Aorx € B; foralli € I by the definition of ﬂ
iffre AUB; foralliel by the definition of U
iff 2 € (AU By) by the definition of ().

el
Therefore, AU (| B; = (AU B;). O
iel iel

(c) Theorem. Let A be a set and {B; : i € I'} be an indexed family of sets. Then A\ (| B; = J(A\ By).
iel i€l



Proof. Suppose that A is a set and that {B; : i € I'} is an indexed family of sets. Let x be given. We
shall prove that z € A\ () B; if and only if x € |J (A \ B;) as follows:

iel el
meA\ﬂBiiﬂxeAandx¢ﬂBi by the definition of \
il i€l

iff x € A and = ¢ B; for some i € I by the definition of ﬂ

iff v € A\ B; for some i € [ by the definition of \

iff v € U(A \ B;) by the definition of U

iel
Therefore, A\ (| Bi = U (A\ By). O

il el

Proof Strategies

To PROVE that A C B, use the diagram

Let z € A.
Prove x € B.

To PROVE that two sets 4 and B are equal, use the proof diagram:

Prove AC B
Prove B C A.

To PROVE that two sets 4 and B are equal, use the proof diagram:

Let x be arbitrary.
Prove z € A > x € B.

To PROVE that a function f: A — B is One-To-One, use the proof diagram:

Let a € A and b € A be arbitrary.
Assume f(a) = f(b)

Prove a = b.

To PROVE that a function f: A — B is Onto, use the proof diagram:

Let y € B be arbitrary.
Let = = (the value you found).
Prove f(z) = y.

Definition. Given two functions g: A — B and f: B — C, one forms the composition function (f og): A — C by defining
(f o g)(z) = f(g(x)) for all z € A.

Remark. Let {C; : ¢ € I} be an indexed family of sets. Then the following statements are true.
(1) z € .chi iff x € C; for some i € I.
(2) z ¢ lDICi iff x ¢ C; for every i € I.
(3) z € F]ICQ- iff x € C; for every i € I.
4) z ¢ F]ICZ- iff ¢ C; for some i € I.
i€



