MAT 300 Review Problems for Chapter 3 and Sections 4.2, 4.4 Exam #2 on Friday, November 8, 2019

A proof by mathematical induction must NOT have the notations P(1), P(n), or P(n+1) appearing anywhere in the proof.

Prove¹ the following theorems:

- 1. Theorem. Let x and y be real numbers. Then $(x y)(x^2 + xy + y^2) = x^3 y^3$.
- **2. Theorem.** Let a and b be real numbers. If a < 0 and b < 0, then $(a + b)^2 > a^2 + b^2$.
- **3. Theorem.** Let $n \ge 2$ be a natural number. If $2^n > n$, then $2^{n+1} > n+1$.
- 4. Theorem. For all real numbers y > 0, there is a real number x < 0 such that $y^2 + 2xy = -x^2$.
- 5. Theorem. Let a and b are real numbers such that a > 0 and b < -4. Then ab+b < -4(a+1).
- **6. Theorem.** Suppose *n* is an integer. Then $15 \mid n$ if and only if $3 \mid n$ and $5 \mid n$.
- 7. Theorem. Let m, a, b, c, d be integers where m > 1. If m | (a b) and m | (c d), then m | ((a + c) (b + d)).
- 8. Theorem. Let a, b, d be in \mathbb{R} . If $0 \le a < d$ and $0 \le b < d$, then a b < d and b a < d.
- **9. Theorem.** For all integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid (a b)$.
- 10. Theorem. For every $x \in \mathbb{R}$, there is a real number y such that $yx^2 3x = -2y$.
- **11. Theorem.** There is a $y \in \mathbb{R}$, such that yx + 6 = 2x + 3y for all real numbers x.
- **12. Theorem.** For every natural number $n \ge 1, 2 + 6 + 18 + \dots + 2 \cdot 3^{n-1} = 3^n 1$.
- **13. Theorem.** Let x and y be positive real numbers. Then $\frac{x+y}{2} \ge \sqrt{xy}$.
- 14. Theorem. The real number $2 + \frac{1}{2}\sqrt{2}$ is irrational.
- **15. Theorem.** For every natural number $n \ge 1$, we have $\sum_{k=1}^{n} \frac{1}{4k^2-1} = \frac{n}{2n+1}$.
- 16. Theorem. $\sum_{k=1}^{n} k \cdot k! = (n+1)! 1$, for all natural numbers $n \ge 1.^2$
- 17. Theorem. $8 \mid (9^n 1)$, for every integer $n \ge 1$.
- **18. Theorem.** Let $x \ge -1$ be a real number. Then $(1+x)^n \ge 1 + nx$ for all integers $n \ge 1$.
- **19. Theorem.** For every integer $n \ge 1$, $\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n 1$.

¹On the exam, to receive full credit, your proofs must be clearly composed, logically correct, and readable. ²Recall that (k + 1)!(k + 2) = (k + 2)!.