MAT 300 Review Problems for Chapter 3 and Sections 4.2, 4.4 Exam \#2 on Friday, November 8, 2019

A proof by mathematical induction must NOT have the notations $P(1), P(n)$, or $P(n+1)$ appearing anywhere in the proof.

Prove ${ }^{1}$ the following theorems:

1. Theorem. Let x and y be real numbers. Then $(x-y)\left(x^{2}+x y+y^{2}\right)=x^{3}-y^{3}$.
2. Theorem. Let a and b be real numbers. If $a<0$ and $b<0$, then $(a+b)^{2}>a^{2}+b^{2}$.
3. Theorem. Let $n \geq 2$ be a natural number. If $2^{n}>n$, then $2^{n+1}>n+1$.
4. Theorem. For all real numbers $y>0$, there is a real number $x<0$ such that $y^{2}+2 x y=-x^{2}$.
5. Theorem. Let a and b are real numbers such that $a>0$ and $b<-4$. Then $a b+b<-4(a+1)$.
6. Theorem. Suppose n is an integer. Then $15 \mid n$ if and only if $3 \mid n$ and $5 \mid n$.
7. Theorem. Let m, a, b, c, d be integers where $m>1$. If $m \mid(a-b)$ and $m \mid(c-d)$, then $m \mid((a+c)-(b+d))$.
8. Theorem. Let a, b, d be in \mathbb{R}. If $0 \leq a<d$ and $0 \leq b<d$, then $a-b<d$ and $b-a<d$.
9. Theorem. For all integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a-b)$.
10. Theorem. For every $x \in \mathbb{R}$, there is a real number y such that $y x^{2}-3 x=-2 y$.
11. Theorem. There is a $y \in \mathbb{R}$, such that $y x+6=2 x+3 y$ for all real numbers x.
12. Theorem. For every natural number $n \geq 1,2+6+18+\cdots+2 \cdot 3^{n-1}=3^{n}-1$.
13. Theorem. Let x and y be positive real numbers. Then $\frac{x+y}{2} \geq \sqrt{x y}$.
14. Theorem. The real number $2+\frac{1}{2} \sqrt{2}$ is irrational.
15. Theorem. For every natural number $n \geq 1$, we have $\sum_{k=1}^{n} \frac{1}{4 k^{2}-1}=\frac{n}{2 n+1}$.
16. Theorem. $\sum_{k=1}^{n} k \cdot k!=(n+1)$! -1 , for all natural numbers $n \geq 1 .{ }^{2}$
17. Theorem. $8 \mid\left(9^{n}-1\right)$, for every integer $n \geq 1$.
18. Theorem. Let $x \geq-1$ be a real number. Then $(1+x)^{n} \geq 1+n x$ for all integers $n \geq 1$.
19. Theorem. For every integer $n \geq 1, \sum_{k=1}^{n} 2 \cdot 3^{k-1}=3^{n}-1$.
[^0]
[^0]: ${ }^{1}$ On the exam, to receive full credit, your proofs must be clearly composed, logically correct, and readable.
 ${ }^{2}$ Recall that $(k+1)!(k+2)=(k+2)!$.

