MAT 300 Review Problems for Chapter 3 and Sections 4.2, 4.4
Exam #2 on Friday, November 8, 2019

A proof by mathematical induction must NOT have the notations P(1), P(n), or P(n+1) appearing
anywhere in the proof.

. Theorem. Let z and y be real numbers. Then (z — y)(z? + 2y + y?) = 2% — 3.

Proof. Let x and y be real numbers. We prove that (z — y)(z? + zy + y?) = 23 — y3 as follows:

(m - y) ($2 + 2y + yz) =2+ x2y + :cy2 — mQy — a:y2 — y3 by the distribution property
=3 — y3 by algebra.

Thus, we have that (z — y)(2? + 2y + y?) = 2% — 3. O
. Theorem. Let a and b be real numbers. If a < 0 and b < 0, then (a + b)? > a® + b2.

Proof. Let a and b be real numbers. Assume that a < 0 and b < 0. Thus, ab > 0 by property of
inequalities. Thus, (1) 2ab > 0 also by property of inequalities. We now show that (a+b)? > a?+b?
as follows:

(a4 b)? =a®+2ab+b* by algebra

> a? 4+ 0+ b? by (1) and property of inequality
=a? +b? by algebra.

Therefore, (a + b)? > a? + b%. O
. Theorem. Let n > 2 be a natural number. If 2" > n, then 2"t > n + 1.

Proof. Let n > 2 be a natural number. Assume that (1) 2" > n. We now show that 2"t > n +1
as follows:

2ntl — 2.9" by algebra
>2-n by (1) and property of inequality
=n+n by algebra
>n+1 Dbecause n > 2 implies that n > 1.

Therefore, 2" > n 4 1. O

. Theorem. For all real numbers y > 0, there is a real number = < 0 such that y? + 2zy = —22.

Proof. Let y > 0. Let = —y. Since y > 0, we see that z < 0. Since the equation y? + 2zy = —z2

is equivalent to the equation y? + 22y + 2% = 0, we prove that y? + 2zy + 2> = 0, when z = —y, as
follows:

y? 4 2zy + 22 = (y +x)% by algebra
= (y—1)* because z = —y
=0 by algebra.

Therefore, 4% + 22y = —22 when © = —y. O



. Theorem. Let a and b are real numbers such that a > 0 and b < —4. Then ab+b < —4(a + 1).

Proof. Let a and b are real numbers. Assume a > 0 and
b< —4. (1)

Since a is positive, (1) implies that
ab < —4a. (2)

Inequalities (1) and (2) imply that
ab+b < —4da+ —4.

Thus, by algebra, we conclude that ab + b < —4(a + 1). O
. Theorem. Suppose n is an integer. Then 15| n if and only if 3|n and 5| n.

Proof. Let n be an integer. We will prove that 15|n if and only if 3|n and 5| n.

(=). Assume 15|n. Thus, n = 15i for some ¢ € Z. So, n = 15; = 3(5i) = 5(3i) and hence, 3 |n
and 5 |n.

(«<). Assume 3 |n and 5 | n. Thus there are integers ¢ and j such that n = 3i and n = 5j. Therefore,
n=10n — 9n = 10(3i) — 9(55) = 15(2i) — 15(37) = 15(2i — 3).
Hence, n = 15k where k = 2i — 3j is an integer. Therefore, 15| n. O

. Theorem. Let m, a, b, ¢, d be integers where m > 1. If m|(a — b) and m|(c — d), then
m|((a+c)— (b+d)).

Proof. Let m, a, b, ¢, d be integers where m > 1. Assume m|(a —b) and m | (c — d). Thus,

a—b=mi (1)
c—d=mj (2)

for some integers ¢ and j. By adding corresponding sides of equations (1) and (2), we obtain
(@ —=0b)+ (¢ — d) = mi+ mj.
After performing some algebra, we conclude that
(a+c)—(b+d)=m(i+j).
Therefore, m| ((a +c¢) — (b + d)). O

. Theorem. Let a,b,dbein R. f 0 <a<dand 0 <b<d,thena—b<dandb—a<d.

Proof. Let a,b,d be real numbers. Assume that (1) 0 < a < d and (2) 0 < b < d. We shall prove
that a —b <dand b—a < d.

First we prove that a — b < d. Since 0 < b, we see that —b < 0. Therefore, a — b < a. Because
a < d, we infer that a — b < d.

Now we prove that b — a < d. Since 0 < a, we see that —a < 0. Therefore, b — a < b. Because
b < d, we infer that b — a < d. ]

. Theorem. For all integers a, b, and ¢, if ¢|a and c| b, then c|(a — b).



10.

11.

12.

13.

Theorem. For every = € R, there is a real number y such that yz? — 3z = —2y.

Proof. Let x be a real number. Let y = x;’% Since 22 + 2 # 0, we see that y is a real number.
Since the equation yx? — 3z = —2y is equivalent to the equation ya? — 3z + 2y = 0, we just need
to show that y2? — 3z + 2y = 0 holds when y = xg’iQ We do this as follows:
yr® — 3z 4 2y = y(2® + 2) — 3z by algebra
3x 2 3z
= 2 — [ —
(372 n 2) (x*42) — 3z because y o
=0 by algebra.
Therefore, yz? — 3z = —2y when y = w;’fa O

Theorem. There is a y € R, such that yz + 6 = 2z + 3y for all real numbers x.

Proof. Let y = 2. We now prove that yx + 6 = 2z + 3y for all real numbers x. Let z be any real
number. Since y = 2, we conclude that yz+6 = 2x+6 and 2x+ 3y = 22+6. Thus, yr+6 = 22+ 3y
for all real numbers z when y = 2. O

Theorem. For every natural number n > 1,2 +6 418 +---4+2.3""1 =37 — 1.

Proof. We prove, by mathematical induction, that 2+6+18+4---4+2-3""1 =37 —1 for all n > 1.
Base step: For n = 1, we see that 2- 371 =31 — 1.

Inductive step: Let n > 1 and assume the induction hypothesis that
24+6+18+ - 4+2.3" 1 =3" - 1. (IH)
We show that 2 +6 + 18 + -+ +2- 3" = 3" — 1 as follows:

246 4+18+--4+2-3"=(24+6+184---+2-3""1)+2.3" by algebra

=3"-1+2-3" by (IH)
=3"+2-3"-1 by algebra
=(1+2)3" -1 by algebra
=3-3"-1 by arithmetic
=3t _1 by algebra.
Hence, 24+ 6+ 18+ --- 423" = 3?1 — 1 and the proof is complete. O

Theorem. Let x and y be positive real numbers. Then ‘”—;ry > J/Ty.

Proof. Let x and y be positive real numbers. Assume, for a contradiction, that xTer < /zy. Thus,
r+y < 2/xy. Since x > 0 and y > 0, we see that x +y and 2,/xy are positive. Thus, by Theorem
3.3.2 of text, we have that (z + y)? < (2,/7y)?. Hence,

22 + 2zy + y? < day

and so,
z? — 2zy 49 < 0.

Because (z — y)? = 22 — 2zy + y?, we conclude that (z — y)? < 0 which is a contradiction (see
Exercise 8 of Section 3.6). Therefore, ITW > \/Ty. O]



14. Theorem. The real number 2 + % 2 is irrational.

15.

Proof. Suppose, for a contradiction, that 2 + % 2 is rational. Thus,

2+;\/§=; (1)

for some integers i and j where j # 0. Solving the equation (1) for v/2 and getting common divisors,
we obtain

2% — 4
V2=
25

Since 2i — 4j and 2j are integers where 2j # 0, we conclude that /2 is rational which is a
contradiction (see Theorem 3.8.8 of text). Therefore, 2 + /2 is irrational. O

n
Theorem. For every natural number n > 1, we have ) Wl—l = gnri
k=1
n
Proof. We prove, by mathematical induction, that 3 41@%1 = 5,47 foralln > 1.
k=1

1

1
: . — 1 _ 1 1 _ 1
Base step: For n = 1, we see that kzl 2—7 = 3 and 557 = 5. Thus, kzl

1
4k2—1 2-1+1°

Inductive step: Let n > 1 be arbitrary and assume the induction hypothesis that

n

1 n
> = : H)
5 (
Pt 4k 1 2n+1
n+1
We show that ). 52— = 27;113 as follows:
k=1
n+1 n
1 1 1 .
D T (Z 42 — 1) P TCES P by regrouping
k=1 k=1
- ! by (IH)
T+l An+1)2—1 Y
L ! by factori
= 11,
I+l 2+ )+ D@n+1)—1) 2 Aeome
=" + ! by algeb
T+l (2n+3)(2n+1) v alsebta
1 [ 1
“mti " s by algebra
1 [2n24+3n+1 .
= Ml mE3 by common denominator
I [2n+1)(n+1) ,
=35 1 o+ 3 by factoring
.
= 2n _:_ 3 by algebra.
n
n+1

Hence, > W%l = 2"”—‘:13 and the proof is complete. O
k=1



16.

17.

n
Theorem. ) k-k!= (n+ 1)! — 1, for all natural numbers n > 1.
k=1

n
Proof. We prove, by mathematical induction, that > k-kl = (n+1)! — 1 for all n > 1.
k=1

1
Base step: For n = 1, we see that > k-k! = 1.l =1 and (1+1)! =1 =2—1 = 1. Thus,
k=1

1
S kekl=(1+1) -1
k=1

Inductive step: Let n > 1 be arbitrary and assume the induction hypothesis that

 kekl=(n+1) -1 (IH)
n+1
We show that Y k- k! = (n+2)! —1 as follows:
k=1
n+1 n
Zk -kl = (Zk‘ : k‘!) +(n+1)-(n+1)! Dby regrouping
k=1
=n+1)!—-14+Mn+1)-(n+1)! by (IH)
=n+1)!+(n+1)-(n+1)! =1 by algebra
=(14+n+Dn+1 -1 by algebra
=n+2)(n+1)! -1 by algebra
=(n+2)!-1 because (n +2)(n 4+ 1)! = (n 4 2)\.
n+1
Hence, > k-k!'=(n+2)! — 1 and the proof is complete. O

Theorem. 8| (9" — 1), for every integer n > 1.

Proof. We prove, by mathematical induction, that 8| (9™ — 1) for all n > 1.
Base step: For n = 1, we see that 9! —1 = 8. Thus, 8| (9! —1).
Inductive step: Let n > 1 and assume the induction hypothesis that 8| (9™ — 1); that is, assume
o —1=8i (IH)
for some integer . We show that 8| (9”1 — 1) as follows:
gntl _1=9.9" 1 by algebra
=(8+1)9"—1  as8+1=09
=8-9"+ (9" —1) by algebra

=8-9"+8i by (IH)
=8(9" +1) by algebra.

So 9"+ — 1 =8(9" + i) where 9" + i is an integer. Thus, 8| (97! —1). O



18. Theorem. Let z > —1 be a real number. Then (1 + )™ > 1 4 nx for all integers n > 1.

Proof. Let > —1 be a real number. Thus, (x) 1+ 2 > 0. We prove, by mathematical induction,
that (14 x)" > 1+ nx for all n > 1.
Base step: For n =1, we see that (1 +2)! =1+xand 1+1-2=1+x. Thus, (14+2)! >14+1-2.

Inductive step: Let n > 1 and assume the induction hypothesis that
(14+2)" > 1+ nz. (IH)
We show that (1 + )"t > 1+ (n + 1)z as follows:

(1+z)" =1 +2)1+2)" by algebra
> (1+2)(1+ nx) by (IH), (x), and prop. of inequality
=1+4+nz+z+nz? by algebra
=1+ (n+1z+ na? by algebra
>14+(n+ 1z as nx? > 0.

Hence, (1 + z)"*! > 1+ (n + 1)z and the proof is complete. O

n
19. Theorem. For every integer n > 1, > 2-3k1 =37 — 1.
k=1

n
Proof. We prove, by mathematical induction, that > 2-3k1 =37 — 1 for all n > 1.
k=1
1 1
Base step: For n = 1, we see that ) 2.3k=1 = 2.31-1 =2 and 3' —1 = 2. Thus, > 2.3k—1 =311,
k=1 k=1

Inductive step: Let n > 1 be arbitrary and assume the induction hypothesis that

n
d 2.3 l=3r o1 (IH)
k=1

n+1
We show that > 2-3k-1 =37+ — 1 as follows:

k=1

n+1 n

Z 2.3k = (Z 2. 3k1> 423" by regrouping

k=1 k=1
=3" 142311 by (IH)
=3"-1+2-3" by algebra
=3"+2-3"-1 by algebra
=(1+2)3"-1 by algebra
=3-3"-1 by aritmetic
=3t 1 by algebra.

n+1
Hence, > 2-3F1 =37+1 _ 1 and the proof is complete. O

k=1



