MAT 300 Review Problems for Chapter 3 and Sections 4.2, 4.4 Exam #2 on Friday, November 8, 2019

A proof by mathematical induction must NOT have the notations P(1), P(n), or P(n+1) appearing anywhere in the proof.

1. Theorem. Let x and y be real numbers. Then $(x - y)(x^2 + xy + y^2) = x^3 - y^3$.

Proof. Let x and y be real numbers. We prove that $(x - y)(x^2 + xy + y^2) = x^3 - y^3$ as follows:

$$\begin{aligned} (x-y)(x^2+xy+y^2) &= x^3+x^2y+xy^2-x^2y-xy^2-y^3 & \text{by the distribution property} \\ &= x^3-y^3 & \text{by algebra.} \end{aligned}$$

Thus, we have that $(x - y)(x^2 + xy + y^2) = x^3 - y^3$.

2. Theorem. Let a and b be real numbers. If a < 0 and b < 0, then $(a + b)^2 > a^2 + b^2$.

Proof. Let a and b be real numbers. Assume that a < 0 and b < 0. Thus, ab > 0 by property of inequalities. Thus, (1) 2ab > 0 also by property of inequalities. We now show that $(a+b)^2 > a^2+b^2$ as follows:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 by algebra
 $> a^2 + 0 + b^2$ by (1) and property of inequality
 $= a^2 + b^2$ by algebra.

Therefore, $(a+b)^2 > a^2 + b^2$.

3. Theorem. Let $n \ge 2$ be a natural number. If $2^n > n$, then $2^{n+1} > n+1$.

Proof. Let $n \ge 2$ be a natural number. Assume that (1) $2^n > n$. We now show that $2^{n+1} > n+1$ as follows:

$$2^{n+1} = 2 \cdot 2^n$$
 by algebra
> $2 \cdot n$ by (1) and property of inequality
= $n + n$ by algebra
> $n + 1$ because $n \ge 2$ implies that $n > 1$.

Therefore, $2^{n+1} > n+1$.

4. Theorem. For all real numbers y > 0, there is a real number x < 0 such that $y^2 + 2xy = -x^2$.

Proof. Let y > 0. Let x = -y. Since y > 0, we see that x < 0. Since the equation $y^2 + 2xy = -x^2$ is equivalent to the equation $y^2 + 2xy + x^2 = 0$, we prove that $y^2 + 2xy + x^2 = 0$, when x = -y, as follows:

$$y^{2} + 2xy + x^{2} = (y + x)^{2}$$
 by algebra
= $(y - y)^{2}$ because $x = -y$
= 0 by algebra.

Therefore, $y^2 + 2xy = -x^2$ when x = -y.

5. Theorem. Let a and b are real numbers such that a > 0 and b < -4. Then ab + b < -4(a + 1).

Proof. Let a and b are real numbers. Assume a > 0 and

$$b < -4. \tag{1}$$

Since a is positive, (1) implies that

$$ab < -4a.$$
 (2)

Inequalities (1) and (2) imply that

ab+b<-4a+-4.

Thus, by algebra, we conclude that ab + b < -4(a + 1).

6. Theorem. Suppose n is an integer. Then $15 \mid n$ if and only if $3 \mid n$ and $5 \mid n$.

Proof. Let n be an integer. We will prove that $15 \mid n$ if and only if $3 \mid n$ and $5 \mid n$.

 (\Rightarrow) . Assume $15 \mid n$. Thus, n = 15i for some $i \in \mathbb{Z}$. So, n = 15i = 3(5i) = 5(3i) and hence, $3 \mid n$ and $5 \mid n$.

 (\Leftarrow) . Assume $3 \mid n$ and $5 \mid n$. Thus there are integers *i* and *j* such that n = 3i and n = 5j. Therefore,

$$n = 10n - 9n = 10(3i) - 9(5j) = 15(2i) - 15(3j) = 15(2i - 3j).$$

Hence, n = 15k where k = 2i - 3j is an integer. Therefore, $15 \mid n$.

7. Theorem. Let m, a, b, c, d be integers where m > 1. If $m \mid (a - b)$ and $m \mid (c - d)$, then $m \mid ((a + c) - (b + d))$.

Proof. Let m, a, b, c, d be integers where m > 1. Assume $m \mid (a - b)$ and $m \mid (c - d)$. Thus,

$$a - b = mi \tag{1}$$

$$c - d = mj \tag{2}$$

for some integers i and j. By adding corresponding sides of equations (1) and (2), we obtain

$$(a-b) + (c-d) = mi + mj.$$

After performing some algebra, we conclude that

$$(a + c) - (b + d) = m(i + j)$$

Therefore, $m \mid ((a+c) - (b+d))$.

8. Theorem. Let a, b, d be in \mathbb{R} . If $0 \le a < d$ and $0 \le b < d$, then a - b < d and b - a < d.

Proof. Let a, b, d be real numbers. Assume that (1) $0 \le a < d$ and (2) $0 \le b < d$. We shall prove that a - b < d and b - a < d.

First we prove that a - b < d. Since $0 \le b$, we see that $-b \le 0$. Therefore, $a - b \le a$. Because a < d, we infer that a - b < d.

Now we prove that b - a < d. Since $0 \le a$, we see that $-a \le 0$. Therefore, $b - a \le b$. Because b < d, we infer that b - a < d.

9. Theorem. For all integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid (a - b)$.

10. Theorem. For every $x \in \mathbb{R}$, there is a real number y such that $yx^2 - 3x = -2y$.

Proof. Let x be a real number. Let $y = \frac{3x}{x^2+2}$. Since $x^2 + 2 \neq 0$, we see that y is a real number. Since the equation $yx^2 - 3x = -2y$ is equivalent to the equation $yx^2 - 3x + 2y = 0$, we just need to show that $yx^2 - 3x + 2y = 0$ holds when $y = \frac{3x}{x^2+2}$. We do this as follows:

$$yx^{2} - 3x + 2y = y(x^{2} + 2) - 3x \qquad \text{by algebra}$$
$$= \left(\frac{3x}{x^{2} + 2}\right)(x^{2} + 2) - 3x \qquad \text{because } y = \frac{3x}{x^{2} + 2}$$
$$= 0 \qquad \qquad \text{by algebra.}$$

Therefore, $yx^2 - 3x = -2y$ when $y = \frac{3x}{x^2+2}$.

11. Theorem. There is a $y \in \mathbb{R}$, such that yx + 6 = 2x + 3y for all real numbers x.

Proof. Let y = 2. We now prove that yx + 6 = 2x + 3y for all real numbers x. Let x be any real number. Since y = 2, we conclude that yx + 6 = 2x + 6 and 2x + 3y = 2x + 6. Thus, yx + 6 = 2x + 3y for all real numbers x when y = 2.

12. Theorem. For every natural number $n \ge 1, 2 + 6 + 18 + \dots + 2 \cdot 3^{n-1} = 3^n - 1$.

Proof. We prove, by mathematical induction, that $2+6+18+\cdots+2\cdot 3^{n-1}=3^n-1$ for all $n \ge 1$. Base step: For n = 1, we see that $2 \cdot 3^{1-1} = 3^1 - 1$.

Inductive step: Let $n \ge 1$ and assume the induction hypothesis that

$$2 + 6 + 18 + \dots + 2 \cdot 3^{n-1} = 3^n - 1.$$
 (IH)

We show that $2 + 6 + 18 + \dots + 2 \cdot 3^n = 3^{n+1} - 1$ as follows:

$$\begin{array}{ll} 2+6+18+\dots+2\cdot 3^{n}=(2+6+18+\dots+2\cdot 3^{n-1})+2\cdot 3^{n} & \text{by algebra} \\ &=3^{n}-1+2\cdot 3^{n} & \text{by (IH)} \\ &=3^{n}+2\cdot 3^{n}-1 & \text{by algebra} \\ &=(1+2)3^{n}-1 & \text{by algebra} \\ &=3\cdot 3^{n}-1 & \text{by algebra} \\ &=3^{n+1}-1 & \text{by algebra.} \end{array}$$

Hence, $2+6+18+\cdots+2\cdot 3^n = 3^{n+1}-1$ and the proof is complete.

13. Theorem. Let x and y be positive real numbers. Then $\frac{x+y}{2} \ge \sqrt{xy}$.

Proof. Let x and y be positive real numbers. Assume, for a contradiction, that $\frac{x+y}{2} < \sqrt{xy}$. Thus, $x + y < 2\sqrt{xy}$. Since x > 0 and y > 0, we see that x + y and $2\sqrt{xy}$ are positive. Thus, by Theorem 3.3.2 of text, we have that $(x + y)^2 < (2\sqrt{xy})^2$. Hence,

$$x^2 + 2xy + y^2 < 4xy$$

and so,

$$x^2 - 2xy + y^2 < 0.$$

Because $(x - y)^2 = x^2 - 2xy + y^2$, we conclude that $(x - y)^2 < 0$ which is a contradiction (see Exercise 8 of Section 3.6). Therefore, $\frac{x+y}{2} \ge \sqrt{xy}$.

14. Theorem. The real number $2 + \frac{1}{2}\sqrt{2}$ is irrational.

Proof. Suppose, for a contradiction, that $2 + \frac{1}{2}\sqrt{2}$ is rational. Thus,

$$2 + \frac{1}{2}\sqrt{2} = \frac{i}{j} \tag{1}$$

for some integers *i* and *j* where $j \neq 0$. Solving the equation (1) for $\sqrt{2}$ and getting common divisors, we obtain

$$\sqrt{2} = \frac{2i - 4j}{2j}.$$

Since 2i - 4j and 2j are integers where $2j \neq 0$, we conclude that $\sqrt{2}$ is rational which is a contradiction (see Theorem 3.8.8 of text). Therefore, $2 + \frac{1}{2}\sqrt{2}$ is irrational.

15. Theorem. For every natural number $n \ge 1$, we have $\sum_{k=1}^{n} \frac{1}{4k^2-1} = \frac{n}{2n+1}$.

Proof. We prove, by mathematical induction, that $\sum_{k=1}^{n} \frac{1}{4k^2-1} = \frac{n}{2n+1}$ for all $n \ge 1$.

Base step: For n = 1, we see that $\sum_{k=1}^{1} \frac{1}{4k^2 - 1} = \frac{1}{3}$ and $\frac{1}{2 \cdot 1 + 1} = \frac{1}{3}$. Thus, $\sum_{k=1}^{1} \frac{1}{4k^2 - 1} = \frac{1}{2 \cdot 1 + 1}$.

Inductive step: Let $n \ge 1$ be arbitrary and assume the induction hypothesis that

$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}.$$
 (IH)

We show that $\sum_{k=1}^{n+1} \frac{1}{4k^2-1} = \frac{n+1}{2n+3}$ as follows:

$$\sum_{k=1}^{n+1} \frac{1}{4k^2 - 1} = \left(\sum_{k=1}^n \frac{1}{4k^2 - 1}\right) + \frac{1}{4(n+1)^2 - 1}$$
 by regrouping
$$= \frac{n}{2n+1} + \frac{1}{4(n+1)^2 - 1}$$
 by (IH)

$$= \frac{n}{2n+1} + \frac{1}{(2(n+1)+1)(2(n+1)-1)}$$
 by factoring

$$= \frac{n}{2n+1} + \frac{1}{(2n+3)(2n+1)}$$
 by algebra

$$= \frac{1}{2n+1} \left[n + \frac{1}{2n+3} \right]$$
 by algebra

$$= \frac{1}{2n+1} \left[\frac{2n^2 + 3n + 1}{2n+3} \right]$$
 by common denominator

$$= \frac{1}{2n+1} \left[\frac{(2n+1)(n+1)}{2n+3} \right]$$
 by factoring

$$= \frac{n+1}{2n+3}$$
 by algebra.

Hence, $\sum_{k=1}^{n+1} \frac{1}{4k^2-1} = \frac{n+1}{2n+3}$ and the proof is complete.

16. Theorem. $\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$, for all natural numbers $n \ge 1$.

Proof. We prove, by mathematical induction, that $\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$ for all $n \ge 1$.

Base step: For n = 1, we see that $\sum_{k=1}^{1} k \cdot k! = 1 \cdot ! = 1$ and (1+1)! - 1 = 2! - 1 = 1. Thus, $\sum_{k=1}^{1} k \cdot k! = (1+1)! - 1$.

Inductive step: Let $n \ge 1$ be arbitrary and assume the induction hypothesis that

$$\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1.$$
(IH)

We show that $\sum_{k=1}^{n+1} k \cdot k! = (n+2)! - 1$ as follows:

$$\begin{split} \sum_{k=1}^{n+1} k \cdot k! &= \left(\sum_{k=1}^{n} k \cdot k!\right) + (n+1) \cdot (n+1)! & \text{by regrouping} \\ &= (n+1)! - 1 + (n+1) \cdot (n+1)! & \text{by (IH)} \\ &= (n+1)! + (n+1) \cdot (n+1)! - 1 & \text{by algebra} \\ &= (1+n+1)(n+1)! - 1 & \text{by algebra} \\ &= (n+2)(n+1)! - 1 & \text{by algebra} \\ &= (n+2)! - 1 & \text{because } (n+2)(n+1)! = (n+2)!. \end{split}$$

Hence, $\sum_{k=1}^{n+1} k \cdot k! = (n+2)! - 1$ and the proof is complete.

17. Theorem. $8 \mid (9^n - 1)$, for every integer $n \ge 1$.

Proof. We prove, by mathematical induction, that $8 \mid (9^n - 1)$ for all $n \geq 1$.

Base step: For n = 1, we see that $9^1 - 1 = 8$. Thus, $8 | (9^1 - 1)$.

Inductive step: Let $n \ge 1$ and assume the induction hypothesis that $8 \mid (9^n - 1)$; that is, assume

$$9^n - 1 = 8i \tag{IH}$$

for some integer *i*. We show that $8 | (9^{n+1} - 1)$ as follows:

 9^{r}

$$a^{n+1} - 1 = 9 \cdot 9^n - 1$$
 by algebra

$$= (8+1)9^n - 1$$
 as $8+1=9$

$$= 8 \cdot 9^n + (9^n - 1)$$
 by algebra

$$= 8 \cdot 9^n + 8i$$
 by (IH)

$$= 8(9^n + i)$$
 by algebra.

So $9^{n+1} - 1 = 8(9^n + i)$ where $9^n + i$ is an integer. Thus, $8 \mid (9^{n+1} - 1)$.

18. Theorem. Let $x \ge -1$ be a real number. Then $(1+x)^n \ge 1 + nx$ for all integers $n \ge 1$.

Proof. Let $x \ge -1$ be a real number. Thus, $(\star) \ 1 + x \ge 0$. We prove, by mathematical induction, that $(1+x)^n \ge 1 + nx$ for all $n \ge 1$.

Base step: For n = 1, we see that $(1 + x)^1 = 1 + x$ and $1 + 1 \cdot x = 1 + x$. Thus, $(1 + x)^1 \ge 1 + 1 \cdot x$.

Inductive step: Let $n \ge 1$ and assume the induction hypothesis that

$$(1+x)^n \ge 1 + nx. \tag{IH}$$

We show that $(1+x)^{n+1} \ge 1 + (n+1)x$ as follows:

$$(1+x)^{n+1} = (1+x)(1+x)^n \qquad \text{by algebra}$$

$$\geq (1+x)(1+nx) \qquad \text{by (IH), (*), and prop. of inequality}$$

$$= 1+nx+x+nx^2 \qquad \text{by algebra}$$

$$= 1+(n+1)x+nx^2 \qquad \text{by algebra}$$

$$\geq 1+(n+1)x \qquad \text{as } nx^2 \geq 0.$$

Hence, $(1+x)^{n+1} \ge 1 + (n+1)x$ and the proof is complete.

19. Theorem. For every integer $n \ge 1$, $\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n - 1$.

Proof. We prove, by mathematical induction, that $\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n - 1$ for all $n \ge 1$.

Base step: For n = 1, we see that $\sum_{k=1}^{1} 2 \cdot 3^{k-1} = 2 \cdot 3^{1-1} = 2$ and $3^1 - 1 = 2$. Thus, $\sum_{k=1}^{1} 2 \cdot 3^{k-1} = 3^1 - 1$.

Inductive step: Let $n \ge 1$ be arbitrary and assume the induction hypothesis that

$$\sum_{k=1}^{n} 2 \cdot 3^{k-1} = 3^n - 1.$$
 (IH)

We show that $\sum_{k=1}^{n+1} 2 \cdot 3^{k-1} = 3^{n+1} - 1$ as follows:

$$\sum_{k=1}^{n+1} 2 \cdot 3^{k-1} = \left(\sum_{k=1}^{n} 2 \cdot 3^{k-1}\right) + 2 \cdot 3^{n+1-1} \quad \text{by regrouping}$$

$$= 3^{n} - 1 + 2 \cdot 3^{n+1-1} \qquad \text{by (IH)}$$

$$= 3^{n} - 1 + 2 \cdot 3^{n} \qquad \text{by algebra}$$

$$= 3^{n} + 2 \cdot 3^{n} - 1 \qquad \text{by algebra}$$

$$= (1+2)3^{n} - 1 \qquad \text{by algebra}$$

$$= 3 \cdot 3^{n} - 1 \qquad \text{by algebra}$$

$$= 3^{n+1} - 1 \qquad \text{by algebra}.$$

Hence, $\sum_{k=1}^{n+1} 2 \cdot 3^{k-1} = 3^{n+1} - 1$ and the proof is complete.