Therefore, $f^{-1}[U] \cup f^{-1}[V] \subseteq f^{-1}[U \cup V]$. This completes the proof of (d).
Theorem 6.4.6. Let $f: X \rightarrow Y$ be a function. Let C, D be subsets of X. If f is one-to-one, then $f[C \cap D]=f[C] \cap f[D]$.

Proof. Let $f: X \rightarrow Y$ be a function. Let C, D be subsets of X and assume that f is one-to-one. We shall prove that $f[C \cap D]=f[C] \cap f[D]$. Theorem 6.4.5(a) implies that $f[C \cap D] \subseteq f[C] \cap f[D]$. To show that $f[C] \cap f[D] \subseteq f[C \cap D]$, let $y \in f[C] \cap f[D]$. We will prove that $y \in f[C \cap D]$. Since $y \in f[C] \cap f[D]$, we see that $y \in f[C]$ and $y \in f[D]$. Because $y \in f[C]$, there is a $c \in C$ such that $f(c)=y$. Also, since $y \in f[D]$, there is a $d \in D$ such that $f(d)=y$. Hence, $y=f(c)=f(d)$. Since f is one-to-one, we have $c=d$. Thus, $c \in D$. So $c \in C \cap D$ and therefore, $y=f(c) \in f[C \cap D]$. We conclude that $f[C \cap D]=f[C] \cap f[D]$.

Exercises 6.4

1. Using Definitions 6.4.1 and 6.4.2, explain why items $1-4$ of Remark 6.4 .3 hold.
2. Prove Theorem 6.4.4.
3. Prove item (b) of Theorem 6.4.5.
4. Prove item (c) of Theorem 6.4.5.
5. Given $a, b \in \mathbb{R}$ with $a>0$, define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=a x+b$. Let $U=[2,3]$. Using interval notation, evaluate $f[U]$ and $f^{-1}[U]$.
6. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$ and let $U=[-1,4]$. Show the following:
(a) $f\left[f^{-1}[U]\right] \neq U$.
(b) $f^{-1}[f[U]] \neq U$.
(c) $f\left[f^{-1}[U]\right] \neq f^{-1}[f[U]]$.
7. Let $f: X \rightarrow Y$ be a function and let $A \subseteq X$ and $B \subseteq X$. Prove that if $A \subseteq B$, then $f[A] \subseteq f[B]$.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined in Example 1 on page 189 . Find $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ such that $f[A] \subseteq f[B]$ and $A \nsubseteq B$.
9. Suppose $f: X \rightarrow Y$ is a one-to-one function. Let $A \subseteq X$ and $B \subseteq X$. Prove that if $f[A] \subseteq f[B]$, then $A \subseteq B$.
10. Let $f: X \rightarrow Y$ be a function and let $C \subseteq Y$ and $D \subseteq Y$. Prove that if $C \subseteq D$, then $f^{-1}[C] \subseteq f^{-1}[D]$.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined in Example 3. Find $C \subseteq \mathbb{R}$ and $D \subseteq \mathbb{R}$ such that $f^{-1}[C] \subseteq f^{-1}[D]$ and $C \nsubseteq D$.
(12. Suppose $f: X \rightarrow Y$ is onto and let $C \subseteq Y$ and $D \subseteq Y$. Prove if $f^{-1}[C] \subseteq f^{-1}[D]$, then $C \subseteq D$.
12. Let $f: X \rightarrow Y$ be a function. Let A be a subset of X. Prove that $A \subseteq f^{-1}[f[A]]$.
