Therefore, $f^{-1}[U] \cup f^{-1}[V] \subseteq f^{-1}[U \cup V]$. This completes the proof of (d).

Theorem 6.4.6. Let $f: X \to Y$ be a function. Let C, D be subsets of X. If f is one-to-one, then $f[C \cap D] = f[C] \cap f[D]$.

Proof. Let $f: X \to Y$ be a function. Let C, D be subsets of X and assume that f is one-to-one. We shall prove that $f[C \cap D] = f[C] \cap f[D]$. Theorem 6.4.5(a) implies that $f[C \cap D] \subseteq f[C] \cap f[D]$. To show that $f[C] \cap f[D] \subseteq f[C \cap D]$, let $y \in f[C] \cap f[D]$. We will prove that $y \in f[C \cap D]$. Since $y \in f[C] \cap f[D]$, we see that $y \in f[C]$ and $y \in f[D]$. Because $y \in f[C]$, there is a $c \in C$ such that f(c) = y. Also, since $y \in f[D]$, there is a $d \in D$ such that f(d) = y. Hence, y = f(c) = f(d). Since f is one-to-one, we have c = d. Thus, $c \in D$. So $c \in C \cap D$ and therefore, $y = f(c) \in f[C \cap D]$. We conclude that $f[C \cap D] = f[C] \cap f[D]$.

Exercises 6.4 _____

- 1. Using Definitions 6.4.1 and 6.4.2, explain why items 1–4 of Remark 6.4.3 hold.
- **2.** Prove Theorem 6.4.4.
- (3) Prove item (b) of Theorem 6.4.5.
- **4.** Prove item (c) of Theorem 6.4.5.
- **5.** Given $a, b \in \mathbb{R}$ with a > 0, define the function $f \colon \mathbb{R} \to \mathbb{R}$ by f(x) = ax + b. Let U = [2,3]. Using interval notation, evaluate f[U] and $f^{-1}[U]$.
- 6. Define the function $f \colon \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ and let U = [-1,4]. Show the following:
 - (a) $f[f^{-1}[U]] \neq U$.
 - (b) $f^{-1}[f[U]] \neq U$.
 - (c) $f[f^{-1}[U]] \neq f^{-1}[f[U]].$
- **7.** Let $f: X \to Y$ be a function and let $A \subseteq X$ and $B \subseteq X$. Prove that if $A \subseteq B$, then $f[A] \subseteq f[B]$.
- **8.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined in Example 1 on page 189. Find $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ such that $f[A] \subseteq f[B]$ and $A \not\subseteq B$.
- 9. Suppose $f: X \to Y$ is a one-to-one function. Let $A \subseteq X$ and $B \subseteq X$. Prove that if $f[A] \subseteq f[B]$, then $A \subseteq B$.
- **10.** Let $f: X \to Y$ be a function and let $C \subseteq Y$ and $D \subseteq Y$. Prove that if $C \subseteq D$, then $f^{-1}[C] \subseteq f^{-1}[D]$.
- **11.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined in Example 3. Find $C \subseteq \mathbb{R}$ and $D \subseteq \mathbb{R}$ such that $f^{-1}[C] \subseteq f^{-1}[D]$ and $C \not\subseteq D$.
- (12) Suppose $f: X \to Y$ is onto and let $C \subseteq Y$ and $D \subseteq Y$. Prove if $f^{-1}[C] \subseteq f^{-1}[D]$, then $C \subseteq D$.
- **13.** Let $f: X \to Y$ be a function. Let A be a subset of X. Prove that $A \subseteq f^{-1}[f[A]]$.