Proposition 6.1.11. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = (x-1)^2$ and let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x^2 - 2x + 1$. Prove that f = g.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be defined as stated in the proposition. Let $x \in \mathbb{R}$. We prove that f(x) = g(x) as follows:

$$f(x) = (x-1)^2$$
 by the definition of f
= $x^2 - 2x + 1$ by algebra
= $g(x)$ by definition of g .

Therefore, f = g.

Proposition 6.1.12. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions. Define $s : \mathbb{R} \to \mathbb{R}$ and $t : \mathbb{R} \to \mathbb{R}$ by

$$s(x) = f(x) \cdot g(x) \text{ for all } x \in \mathbb{R}$$
(6.8)

$$t(x) = g(x) \cdot f(x) \text{ for all } x \in \mathbb{R}.$$
(6.9)

Then s = t.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions and let $s : \mathbb{R} \to \mathbb{R}$ and $t : \mathbb{R} \to \mathbb{R}$ be defined by (6.8) and (6.9). Let x be a real number. We shall prove that s(x) = t(x) as follows:

$$s(x) = f(x) \cdot g(x)$$
 by (6.8)
= $g(x) \cdot f(x)$ by the commutative law of multiplication
= $t(x)$ by (6.9).

Therefore, s = t.

Remark 6.1.13. Given functions $f : A \to B$ and $g : A \to B$, to show that $f \neq g$ you must find at least one element $x \in A$ and show that $f(x) \neq g(x)$.

Exercises 6.1

- **1.** Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(n) = 4n + 1. Determine the range of f.
- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = -x^2 + 4x$. Determine the range of f.
- **3.** Consider the functions $f: \mathbb{R}^+ \to \mathbb{R}$ and $g: \mathbb{R}^+ \to \mathbb{R}$ defined by $f(x) = \frac{16x^2 1}{4x + 1}$ and g(x) = 4x 1 for all $x \in \mathbb{R}^+$. Prove that f = g.

4. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions. Define $s: \mathbb{R} \to \mathbb{R}$ and $t: \mathbb{R} \to \mathbb{R}$ by

$$s(x) = 2f(x) + 3g(x) \quad \text{for all } x \in \mathbb{R}$$
(6.10)

$$t(x) = 6f(x) - g(x) \quad \text{for all } x \in \mathbb{R}.$$
(6.11)

Prove that if s = t, then f = g.