Proposition 6.1.11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=(x-1)^{2}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=x^{2}-2 x+1$. Prove that $f=g$.

Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as stated in the proposition. Let $x \in \mathbb{R}$. We prove that $f(x)=g(x)$ as follows:

$$
\begin{aligned}
f(x) & =(x-1)^{2} & & \text { by the definition of } f \\
& =x^{2}-2 x+1 & & \text { by algebra } \\
& =g(x) & & \text { by definition of } g .
\end{aligned}
$$

Therefore, $f=g$.

Proposition 6.1.12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Define $s: \mathbb{R} \rightarrow \mathbb{R}$ and $t: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{align*}
& s(x)=f(x) \cdot g(x) \text { for all } x \in \mathbb{R} \tag{6.8}\\
& t(x)=g(x) \cdot f(x) \text { for all } x \in \mathbb{R} \tag{6.9}
\end{align*}
$$

Then $s=t$.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions and let $s: \mathbb{R} \rightarrow \mathbb{R}$ and $t: \mathbb{R} \rightarrow \mathbb{R}$ be defined by (6.8) and (6.9). Let x be a real number. We shall prove that $s(x)=t(x)$ as follows:

$$
\begin{aligned}
s(x) & =f(x) \cdot g(x) & & \text { by }(6.8) \\
& =g(x) \cdot f(x) & & \text { by the commutative law of multiplication } \\
& =t(x) & & \text { by }(6.9) .
\end{aligned}
$$

Therefore, $s=t$.
Remark 6.1.13. Given functions $f: A \rightarrow B$ and $g: A \rightarrow B$, to show that $f \neq g$ you must find at least one element $x \in A$ and show that $f(x) \neq g(x)$.

Exercises 6.1

1. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(n)=4 n+1$. Determine the range of f.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=-x^{2}+4 x$. Determine the range of f.
3. Consider the functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{16 x^{2}-1}{4 x+1}$ and $g(x)=4 x-1$ for all $x \in \mathbb{R}^{+}$. Prove that $f=g$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Define $s: \mathbb{R} \rightarrow \mathbb{R}$ and $t: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{array}{ll}
s(x)=2 f(x)+3 g(x) & \text { for all } x \in \mathbb{R} \\
t(x)=6 f(x)-g(x) & \text { for all } x \in \mathbb{R} \tag{6.11}
\end{array}
$$

Prove that if $s=t$, then $f=g$.

