and $B=\{2,3\}$. Clearly, the set $X=\{1,3\}$ is subset of $A \cup B$ and thus, $X \in \mathcal{P}(A \cup B)$. Since X is not a subset A and is also not a subset of B, we see that $X \notin \mathcal{P}(A) \cup \mathcal{P}(B)$. So $X \in \mathcal{P}(A \cup B)$ and $X \notin \mathcal{P}(A) \cup \mathcal{P}(B)$. Therefore, $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.

Exercises 5.2

Prove the following theorems, where A, B, C, and D are sets.
(1. Theorem. If $A \subseteq B$, then $A \subseteq A \cup B$ and $A \cap B \subseteq A$.
(2. Theorem. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
3. Theorem. $C \subseteq A$ and $C \subseteq B$ if and only if $C \subseteq A \cap B$.
4. Theorem. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
5. Theorem. $(A \backslash B) \cap(C \backslash B)=(A \cap C) \backslash B$.
6. Theorem. $A \cap(B \cap C)=(A \cap B) \cap C$ and $A \cup(B \cup C)=(A \cup B) \cup C$.
7. Theorem. $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$.
8. Theorem. If $A \backslash B \subseteq C$, then $A \backslash C \subseteq B$.
9. Theorem. If $A \subseteq B$ and $B \cap C=\varnothing$, then $A \subseteq B \backslash C$.
10. Theorem. If $A \backslash B \subseteq C$ and $A \nsubseteq C$, then $A \cap B \neq \varnothing$.
11. Theorem. $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$.
12. Theorem. $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cup D)$.
13. Theorem. $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.
14. Theorem. $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
15. Theorem. $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Exercise Notes: For Exercises 4-6: Use Proof Strategy 5.2.5(b) and review the propositional logic laws in Section 1.1.5. For Exercise 7, one may want to use Proof Strategy 5.2.5(a). For Exercise 8, to prove that $x \in B$, use proof by contradiction. For Exercise 10, review Remark 5.1.2(2).

5.3 Indexed Families of Sets

Given a property $P(x)$ we can form the truth set $\{x: P(x)\}$ when the universe is understood. There is another way to build sets. For example, consider the set S of all perfect squares, that is, the set of all numbers of the form n^{2} for some natural number n. We can define S in two ways:

1. $S=\left\{x:(\exists n \in \mathbb{N})\left(x=n^{2}\right)\right\}=\{1,4,9,16,25, \ldots\}$.
2. $S=\left\{n^{2}: n \in \mathbb{N}\right\}=\{1,4,9,16,25, \ldots\}$.
