5.1 Basic Definitions of Set Theory

(b) $(-2,4) \cup (-\infty,2)$. (c) $(-\infty,0] \setminus (-\infty,2]$. (d) $\mathbb{R} \setminus (2,\infty)$. (e) $(\mathbb{R} \setminus (-\infty,2]) \cup (1,\infty)$.

(2.) Express the following sets as truth sets.

- (a) $A = \{1, 4, 9, 16, 25, \dots\}$
- (b) $B = \{\dots, -15, -10, -5, 0, 5, 10, 15, \dots\}.$

3. Evaluate the truth sets.

- (a) $A = \{x \in \mathbb{N} : 0 < x^2 < 24\}$
- (b) $B = \{y \in \mathbb{Z} : y \mid 12\}$
- (c) $C = \{z \in \mathbb{N} : 4 \mid z\}$
- (d) $D = \{y \in \mathbb{R}^- : 1 \le y^2 \le 4\}.$
- **4.** Let *A*, *B*, and *C* be the sets in Exercise 3. Evaluate the following sets: $A \cup B$, $A \cap C$, $A \setminus B$, $B \setminus A$, and $C \setminus (A \cup B)$.
- **5.** Find two elements in the set $\mathbb{R} \setminus \mathbb{Q}$. Explain why $\mathbb{Q} \setminus \mathbb{R} = \emptyset$.
- 6. Let $A = \{2,3\}$ and $B = \{a,b,c\}$. Evaluate $A \times A$, $A \times B$, $B \times A$, and $B \times B$.
- 7. Let $A = \{2,3\}$ and $B = \{3,a\}$. Evaluate $\mathcal{P}(A \cup B)$ and $\mathcal{P}(A) \cup \mathcal{P}(B)$.
- **8.** Find $\mathcal{P}(\emptyset)$ and $\mathcal{P}(\mathcal{P}(\emptyset))$.
- **9.** Let $A = \{2,3\}, B = \{a,b\}$ and $C = \{x,y\}$. Evaluate $(A \times B) \times C$ and $\mathcal{P}(A \times B)$.
- **10.** Let $A = \{2,3\}, B = \{3,4\}$ and $C = \{3,y\}$. Is $A \times (B \cup C) = (A \times B) \cup (A \times C)$?
- Let *A*, *B*, and *C* be sets. Determine which of the following statements are always true and which are not always true.
 - (a) If $x \in A$, then $x \in A \cup B$.
 - (b) If $x \in A \cup B$, then $x \in A$.
 - (c) If $x \in B$ and $A \subseteq B$, then $x \in A$.
 - (d) If $x \notin B$ and $A \subseteq B$, then $x \notin A$.
 - (e) If $x \in A$ and $A \not\subseteq B$, then $x \notin B$.
 - (f) If $x \in C$ and A = C, then $x \in A$.
 - (g) If $x \in A \cap B$, then $x \in A \cup B$.
 - (h) If $x \notin A \cap B$, then $x \notin A \cup B$.
 - (i) If $x \notin A \setminus B$, then $x \notin A$ or $x \in B$.
 - (j) If $(x, y) \in A \times B$, then $x \in A$ and $y \in B$.
 - (k) If $(x, y) \notin A \times B$, then $y \in A$ and $x \in B$.
 - (1) If $A \in \mathcal{P}(B)$, then $A \subseteq B$.
- 12. Let *E* be the set of even integers and let *O* be the set of odd integers. Is $\{E, O\}$ a partition of \mathbb{Z} ? Justify your answer.
- **13.** Find a partition $P = \{S_0, S_1, S_2, S_3\}$ of \mathbb{Z} , similar to the one in Example 7 on page 148, that breaks \mathbb{Z} up into 4 disjoint subsets.
- 14. Find a partition $P = \{S_0, S_1, S_2, S_3, S_4\}$ of \mathbb{Z} , similar to the one in Example 7, that breaks \mathbb{Z} up into 5 disjoint subsets.