(b) $(-2,4) \cup(-\infty, 2)$.
(c) $(-\infty, 0] \backslash(-\infty, 2]$.
(d) $\mathbb{R} \backslash(2, \infty)$.
(e) $(\mathbb{R} \backslash(-\infty, 2]) \cup(1, \infty)$.
(2.) Express the following sets as truth sets.
(a) $A=\{1,4,9,16,25, \ldots\}$
(b) $B=\{\ldots,-15,-10,-5,0,5,10,15, \ldots\}$.
(3. Evaluate the truth sets.
(a) $A=\left\{x \in \mathbb{N}: 0<x^{2}<24\right\}$
(b) $B=\{y \in \mathbb{Z}: y \mid 12\}$
(c) $C=\{z \in \mathbb{N}: 4 \mid z\}$
(d) $D=\left\{y \in \mathbb{R}^{-}: 1 \leq y^{2} \leq 4\right\}$.
4. Let A, B, and C be the sets in Exercise 3. Evaluate the following sets: $A \cup B$, $A \cap C, A \backslash B, B \backslash A$, and $C \backslash(A \cup B)$.
5. Find two elements in the set $\mathbb{R} \backslash \mathbb{Q}$. Explain why $\mathbb{Q} \backslash \mathbb{R}=\varnothing$.
6. Let $A=\{2,3\}$ and $B=\{a, b, c\}$. Evaluate $A \times A, A \times B, B \times A$, and $B \times B$.
7. Let $A=\{2,3\}$ and $B=\{3, a\}$. Evaluate $\mathcal{P}(A \cup B)$ and $\mathcal{P}(A) \cup \mathcal{P}(B)$.
8. Find $\mathcal{P}(\varnothing)$ and $\mathcal{P}(\mathcal{P}(\varnothing))$.
9. Let $A=\{2,3\}, B=\{a, b\}$ and $C=\{x, y\}$. Evaluate $(A \times B) \times C$ and $\mathcal{P}(A \times B)$.
10. Let $A=\{2,3\}, B=\{3,4\}$ and $C=\{3, y\}$. Is $A \times(B \cup C)=(A \times B) \cup(A \times C)$?
11. Let A, B, and C be sets. Determine which of the following statements are always true and which are not always true.
(a) If $x \in A$, then $x \in A \cup B$.
(b) If $x \in A \cup B$, then $x \in A$.
(c) If $x \in B$ and $A \subseteq B$, then $x \in A$.
(d) If $x \notin B$ and $A \subseteq B$, then $x \notin A$.
(e) If $x \in A$ and $A \nsubseteq B$, then $x \notin B$.
(f) If $x \in C$ and $A=C$, then $x \in A$.
(g) If $x \in A \cap B$, then $x \in A \cup B$.
(h) If $x \notin A \cap B$, then $x \notin A \cup B$.
(i) If $x \notin A \backslash B$, then $x \notin A$ or $x \in B$.
(j) If $(x, y) \in A \times B$, then $x \in A$ and $y \in B$.
(k) If $(x, y) \notin A \times B$, then $y \in A$ and $x \in B$.
(l) If $A \in \mathcal{P}(B)$, then $A \subseteq B$.
12. Let E be the set of even integers and let O be the set of odd integers. Is $\{E, O\}$ a partition of \mathbb{Z} ? Justify your answer.
13. Find a partition $P=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\}$ of \mathbb{Z}, similar to the one in Example 7 on page 148, that breaks \mathbb{Z} up into 4 disjoint subsets.
14. Find a partition $P=\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of \mathbb{Z}, similar to the one in Example 7, that breaks \mathbb{Z} up into 5 disjoint subsets.

