Exercises 4.4 _

(1) Prove, for every integer $n \ge 1$, that $1+3+5+\cdots+(2n-1)=n^2$. 2. Prove, for every integer $n \ge 0$, that $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$ 3. Prove that $2 + 6 + 18 + \dots + 2 \cdot 3^{n-1} = 3^n - 1$, for every integer n > 1. (4) Prove that $\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}$, for all integers $n \ge 2$. 5. Prove that $\sum_{k=1}^{n} (2^k - 2^{k-1}) = 2^n - 1$ for all integers $n \ge 1$, by mathematical induction. 6. Prove that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ holds, for every integer $n \ge 1$. 7. Let c be a real number and let a_m, a_{m+1}, \ldots be a sequence where m is an integer. Prove that $\sum_{k=m}^{n} ca_k = c \sum_{k=m}^{n} a_k$, for all $n \ge m$. 8. Prove, for every integer $n \ge 1$, that $\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}$. 9. Prove that $\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$, for all integers $n \ge 1$. **10.** Prove that $\sum_{k=1}^{n} (-1)^k k^2 = (-1)^n \frac{n(n+1)}{2}$, for all integers $n \ge 1$. **11.** Prove, for every integer $n \ge 1$, that $\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$. 12. Prove for all integers $n \ge 1$ that $\binom{n}{k}$ is a natural number whenever k is an integer satisfying $0 \le k \le n$. 13. Find a closed-form solution for the sum $\sum_{k=0}^{n} (2^k - 1)(3^k + 1)$. **14.** Prove that $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$, for all integers $n \ge 1$. **15.** Let $r \neq 1$ be nonzero. Find a closed-form solution for the sum $\sum_{k=-9}^{n} r^k$. 16. (The Binomial Theorem) Let x and y be variables, representing real numbers. Prove for every integer $n \ge 1$ that $\sum_{k=0}^{n} {n \choose k} x^{n-k} y^k = (x+y)^n$.

Exercise Notes: For Exercise 8, note that $4(n+1)^2 - 1 = (2n+1)(2n+3)$. For Exercise 12, use induction on *n* and Exercise 19 on page 116. For Exercise 16, in the inductive step use Exercise 20 on page 116.