Exercises 4.4

(1.) Prove, for every integer $n \geq 1$, that $1+3+5+\cdots+(2 n-1)=n^{2}$.
2. Prove, for every integer $n \geq 0$, that $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$.
3. Prove that $2+6+18+\cdots+2 \cdot 3^{n-1}=3^{n}-1$, for every integer $n \geq 1$.
(4. Prove that $\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$, for all integers $n \geq 2$.
5. Prove that $\sum_{k=1}^{n}\left(2^{k}-2^{k-1}\right)=2^{n}-1$ for all integers $n \geq 1$, by mathematical induction.
6. Prove that $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ holds, for every integer $n \geq 1$.
7. Let c be a real number and let a_{m}, a_{m+1}, \ldots be a sequence where m is an integer.

Prove that $\sum_{k=m}^{n} c a_{k}=c \sum_{k=m}^{n} a_{k}$, for all $n \geq m$.
8. Prove, for every integer $n \geq 1$, that $\sum_{k=1}^{n} \frac{1}{4 k^{2}-1}=\frac{n}{2 n+1}$.
9. Prove that $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$, for all integers $n \geq 1$.
10. Prove that $\sum_{k=1}^{n}(-1)^{k} k^{2}=(-1)^{n} \frac{n(n+1)}{2}$, for all integers $n \geq 1$.
11. Prove, for every integer $n \geq 1$, that $\sum_{k=1}^{n} k^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.
12. Prove for all integers $n \geq 1$ that $\binom{n}{k}$ is a natural number whenever k is an integer satisfying $0 \leq k \leq n$.
13. Find a closed-form solution for the sum $\sum_{k=0}^{n}\left(2^{k}-1\right)\left(3^{k}+1\right)$.
14. Prove that $\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1}$, for all integers $n \geq 1$.
15. Let $r \neq 1$ be nonzero. Find a closed-form solution for the sum $\sum_{k=-9}^{n} r^{k}$.
16. (The Binomial Theorem) Let x and y be variables, representing real numbers.

Prove for every integer $n \geq 1$ that $\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=(x+y)^{n}$.
Exercise Notes: For Exercise 8, note that $4(n+1)^{2}-1=(2 n+1)(2 n+3)$. For Exercise 12, use induction on n and Exercise 19 on page 116. For Exercise 16, in the inductive step use Exercise 20 on page 116.

