$= (n^{2} + n + 1) + 2(n + 1)$ by distributivity = 2i + 2(n + 1) by induction hypothesis (IH) = 2(i + n + 1) by distributivity.

Hence, $(n+1)^2 + (n+1) + 2 = 2j$ where j = i + n + 1 is an integer. Therefore, $(n+1)^2 + (n+1) + 2$ is even and this completes the proof.

Exercises 4.2

- Using mathematical induction, prove that for every integer $n \ge 0$, the number $n^2 + 3n + 5$ is odd.
- **2.** Prove, by induction, that for every integer $n \ge 0$, either *n* is even or *n* is odd.
- **3.** Using Exercise 2, prove that every integer *n* is either even or odd.
- **4.** Using Exercise 3, prove that for every integer *n* we have that n(n+1) is even.
- **5.** For any integer $n \ge 1$, let P(n) be the statement: $1 + 2 + \dots + n = \frac{n(n+1)}{2}$. What is statement P(3)? What is statement P(1)? What is statement P(n+1)?
- 6 Prove that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$ for all integers $n \ge 1$, by induction.

Exercise Notes: For Exercise 2, use the induction proof strategy

Base step:	Prove 0 is even or odd.
Inductive step:	Let $n \ge 0$ be an integer.
	Assume <i>n</i> is even or <i>n</i> is odd.
	Prove $n + 1$ is even or $n + 1$ is odd.

In the inductive step, since you are assuming an 'or' statement, use a proof by cases. For Exercise 3, there are two cases: (1) $n \ge 0$; (2) n < 0. For Exercise 4, there are two cases: (1) n is odd; (2) n is even.

4.3 Sequences, Sums, and Factorials

In mathematics one often works with regular patterns or repeated processes. The main tool used to study repeated processes is the *sequence*, a fundamental concept with a rich history in mathematics. Sequences are interesting mathematical objects with lots of surprising properties, many of which can be verified by mathematical induction.