$$
\begin{array}{ll}
=\left(n^{2}+n+1\right)+2(n+1) & \text { by distributivity } \\
=2 i+2(n+1) & \text { by induction hypothesis (IH) } \\
=2(i+n+1) & \text { by distributivity. }
\end{array}
$$

Hence, $(n+1)^{2}+(n+1)+2=2 j$ where $j=i+n+1$ is an integer. Therefore, $(n+1)^{2}+(n+1)+2$ is even and this completes the proof.

Exercises 4.2

(1.) Using mathematical induction, prove that for every integer $n \geq 0$, the number $n^{2}+3 n+5$ is odd.
2. Prove, by induction, that for every integer $n \geq 0$, either n is even or n is odd.
3. Using Exercise 2, prove that every integer n is either even or odd.
4. Using Exercise 3, prove that for every integer n we have that $n(n+1)$ is even.
5. For any integer $n \geq 1$, let $P(n)$ be the statement: $1+2+\cdots+n=\frac{n(n+1)}{2}$. What is statement $P(3)$? What is statement $P(1)$? What is statement $P(n+1)$?
(6. Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all integers $n \geq 1$, by induction.

Exercise Notes: For Exercise 2, use the induction proof strategy
Base step: \quad Prove 0 is even or odd.
Inductive step: Let $n \geq 0$ be an integer.
Assume n is even or n is odd.
Prove $n+1$ is even or $n+1$ is odd.
In the inductive step, since you are assuming an 'or' statement, use a proof by cases. For Exercise 3, there are two cases: (1) $n \geq 0$; (2) $n<0$. For Exercise 4, there are two cases: (1) n is odd; (2) n is even.

4.3 Sequences, Sums, and Factorials

In mathematics one often works with regular patterns or repeated processes. The main tool used to study repeated processes is the sequence, a fundamental concept with a rich history in mathematics. Sequences are interesting mathematical objects with lots of surprising properties, many of which can be verified by mathematical induction.

