Exercises 3.5 _

Prove the following theorems:

- **1.** Theorem. Let a, b be real numbers. If a > 0 and b > 0, then $(a+b)^2 > a^2 + b^2$.
- **2.** Theorem. Let a, b be real numbers. If a < 0 and b < 0, then $(a+b)^2 > a^2 + b^2$.
- **3.** Theorem. For all $x \in \mathbb{R}$ and $y \in \mathbb{R}$, if x and y are rational, then x + y is rational.
- **4.** Theorem. For all integers *a*, *b*, and *c*, if $c \mid a$ and $c \mid b$, then $c \mid (a+b)$, $c \mid (a-b)$, and $c \mid (ai)$ for any integer *i*.
- 5. **Theorem.** Let *n* be an integer. If $21 \mid n$, then $3 \mid n$ and $7 \mid n$.
- **6.** Theorem. Suppose *n* is an integer. If $3 \mid n$ and $7 \mid n$, then $21 \mid n$.
- 7. **Theorem.** For every integer *n*, if *n* is odd, then $4 | (n^2 1)$.
- **8.** Theorem. Suppose *m*, *n* are positive integers. If $m \mid n$, then $m \leq n$.
- **9. Theorem.** For all positive integers *a* and *b*, if $a \mid b$ and $b \mid a$, then a = b.
- **10.** Theorem. Let a, b, x, y be negative integers. If a < b and x < y, then ax > by.
- **11. Theorem.** Let a > 0 and b < -4 be real numbers. Then ab + b < -4(a + 1).
- **12. Theorem.** For all integers *a* and *b*, if a | b, then $a^2 | b^2$.
- 13. Theorem. Suppose m, a, b, c, d are integers. If m | (a-b) and m | (c-d), then m | ((a+c)-(b+d)).
- 14. Theorem. Let m, a, b, c, d be integers. If m | (a-b) and m | (c-d), then m | (ac-bd).
- **15.** Theorem. Let a, b, d be real numbers. If $0 \le a < d$ and $0 \le b < d$, then a b < d and b a < d.
- **16.** Theorem. If $0 \le a < d$ and $0 \le b < d$, then -d < a b < d where $a, b, d \in \mathbb{R}$.
- **17. Theorem.** For all integers *a*, *b*, *c*, *d*, if $a \neq c$ and $ad \neq bc$, then there exists a unique rational number *x* such that $\frac{ax+b}{cx+d} = 1$.

Exercise Notes: For Exercises 1 and 2, one should review the substitution properties of inequality 3.3.3. For Exercise 6, use the identity n = 7n - 6n. For Exercise 17, after you identify *x* in your proof, you must prove that $cx + d \neq 0$.

3.6 Statements of the Form $P \lor Q$

Consider the statement "*P* or *Q*." To show that this statement is true, we must verify that either *P* is true or that *Q* is true. So we can try to prove *P* or try to prove *Q*. This direct approach can sometimes be difficult, as we may then have to work with an inadequate set of assumptions. Fortunately, logic offers us an easier approach. We know that $(P \lor Q)$, $(\neg P \rightarrow Q)$, and $(\neg Q \rightarrow P)$ are all logically equivalent. Thus, to prove $(P \lor Q)$, we can either prove $(\neg P \rightarrow Q)$ or prove $(\neg Q \rightarrow P)$. In either case, we obtain a new assumption that we can use in our proof. We can now introduce a proof strategy for such "or" statements.