Theorem 3.4.18. Let a, b be real numbers where $a \neq 0$. Then there exists a unique real number x satisfying ax + b = 0.

Proof Analysis. We are given real numbers *a* and *b* with $a \neq 0$. First we need to prove that there exists a real number *x* that satisfies the equation ax + b = 0; that is, we need to prove that $(\exists x \in \mathbb{R})(ax+b=0)$. Afterwards, we must prove that there is only one such solution. We use the uniqueness–Proof Strategy 3.4.17 to obtain the following proof diagram where P(x) is the assertion that ax + b = 0:

Assume $a, b \in \mathbb{R}$ where $a \neq 0$.Existence:Prove $(\exists x \in \mathbb{R})(ax+b=0)$.Uniqueness:Assume $(ax+b=0) \land (ay+b=0)$.Prove x = y.

We apply the \exists -Proof Strategy 3.4.5(b) to obtain the diagram

	Assume $a, b \in \mathbb{R}$ where $a \neq 0$.
Existence:	Let $x =$ (the value in \mathbb{R} you found).
	Prove $ax + b = 0$.
Uniqueness:	Assume $(ax+b=0) \land (ay+b=0)$.
	Prove $x = y$.

To find this x, we simply solve the equation ax + b = 0 for x and obtain $x = -\frac{b}{a}$. We have our final proof diagram

	Assume $a, b \in \mathbb{R}$ where $a \neq 0$.
Existence:	Let $x = -\frac{b}{a}$.
	Prove $ax + b = 0$.
Uniqueness:	Assume $(ax+b=0) \land (ay+b=0)$.
	Prove $x = y$.

This final diagram will guide our composition of the following proof.

Proof. Let *a*,*b* be real numbers where $a \neq 0$. First we prove that there exists a real number *x* satisfying ax + b = 0. Then we will prove that such an *x* is unique.

Existence: Let $x = -\frac{b}{a}$. Since $a \neq 0$, we see that x is a real number. Now, since $x = -\frac{b}{a}$, using a little algebra we get $ax + b = a(-\frac{b}{a}) + b = 0$. Therefore, there is an x satisfying ax + b = 0.

Uniqueness: Suppose (1) ax + b = 0 and (2) ay + b = 0. We prove that x = y. From (1) and (2) we see that ax + b = ay + b. Using algebra, we conclude that x = y. \Box

Exercises 3.4 _____

Prove the following theorems:

1. Theorem. Let $c \neq 1$ be a real number. There exists a unique real number x satisfying $\frac{x+1}{x-2} = c$.

(A)

- **2.** Theorem. Let *m* be an integer. If *m* is odd, then m^2 is odd.
- **3.** Theorem. Let *m* be an integer. If *m* is even, then m + 5 is odd.
- 4. Theorem. Let *m* and *n* be integers. If *n* is even, then *mn* is even.
- (5.) Theorem. For all integers m and n, if m n is even, then $m^2 n^2$ is even.
- **6.** Theorem. There exists a real number x such that |3x-2| = -7x.
- **(7.) Theorem.** For every real number a > 3, there is a real number x < 0 such that |3x-2| = -ax.
- 8. Theorem. For every real number y > 0, there is a real number x < 0 such that $y^2 + 2xy = -x^2$.
- **9.** Theorem. For each real number x, there is a real number y that satisfies the equation $y^2 2xy = 2$.
- 10. Theorem. There is a real number d > 0 such that for all real numbers x, if |x-1| < d, then $|3x-3| < \frac{1}{2}$.
- (1). Theorem. For every integer *n*, if *n* is odd, then $\frac{n-1}{2}$ is an integer.
- 12. Theorem. Let a, b be integers where $a \neq 0$ or $b \neq 0$. There is an integer $n \ge 1$ of the form n = sa + tb for some integers s, t.
- (13.) Theorem. For every integer *i* there is a unique integer *j* such that 3j + 9i = 6.
- 14. Theorem. For every real number x there is a unique real number y such that $yx^2 3x = -2y$.
- **15. Theorem.** There is a unique real number y such that yx + 6 = 2x + 3y for every real number x.
- **16.** Theorem. Let $c \le 2$ be a real number. Suppose $x + y \le xy$ for all real numbers x and y satisfying $x \ge c$ and $y \ge c$. Then c = 2.

Exercise Notes: For Exercises 6 and 7, recall that $|y| = \pm y$ (see Definition 3.6.6). For Exercise 15, to prove uniqueness, note that if the equation yx + 6 = 2x + 3y holds for every real number *x*, then the equation holds for x = 1. For Exercise 16, note that $2 \ge c$ and $c \ge c$.

3.5 Statements of the Form $P \land Q$

Consider the statement "P and Q." To show that this statement is true, we must show that P is true and show that Q is also true. We can now introduce a proof strategy for such "and" statements.

Proof Strategy 3.5.1. Given a diagram containing the form

Prove $P \wedge Q$