Theorem 3.4.18. Let a, b be real numbers where $a \neq 0$. Then there exists a unique real number x satisfying $a x+b=0$.

Proof Analysis. We are given real numbers a and b with $a \neq 0$. First we need to prove that there exists a real number x that satisfies the equation $a x+b=0$; that is, we need to prove that $(\exists x \in \mathbb{R})(a x+b=0)$. Afterwards, we must prove that there is only one such solution. We use the uniqueness-Proof Strategy 3.4.17 to obtain the following proof diagram where $P(x)$ is the assertion that $a x+b=0$:

Assume $a, b \in \mathbb{R}$ where $a \neq 0$.
Existence: \quad Prove $(\exists x \in \mathbb{R})(a x+b=0)$.
Uniqueness: \quad Assume $(a x+b=0) \wedge(a y+b=0)$.
Prove $x=y$.
We apply the \exists-Proof Strategy 3.4.5(b) to obtain the diagram
Assume $a, b \in \mathbb{R}$ where $a \neq 0$.
Existence: \quad Let $x=($ the value in \mathbb{R} you found $)$.
Prove $a x+b=0$.
Uniqueness: \quad Assume $(a x+b=0) \wedge(a y+b=0)$.
Prove $x=y$.
To find this x, we simply solve the equation $a x+b=0$ for x and obtain $x=-\frac{b}{a}$. We have our final proof diagram

Assume $a, b \in \mathbb{R}$ where $a \neq 0$.

Prove $x=y$.
This final diagram will guide our composition of the following proof.
Proof. Let a, b be real numbers where $a \neq 0$. First we prove that there exists a real number x satisfying $a x+b=0$. Then we will prove that such an x is unique.
Existence: Let $x=-\frac{b}{a}$. Since $a \neq 0$, we see that x is a real number. Now, since $x=-\frac{b}{a}$, using a little algebra we get $a x+b=a\left(-\frac{b}{a}\right)+b=0$. Therefore, there is an x satisfying $a x+b=0$.
Uniqueness: Suppose (1) $a x+b=0$ and (2) $a y+b=0$. We prove that $x=y$. From (1) and (2) we see that $a x+b=a y+b$. Using algebra, we conclude that $x=y$.

Exercises 3.4

Prove the following theorems:
(1.) Theorem. Let $c \neq 1$ be a real number. There exists a unique real number x satisfying $\frac{x+1}{x-2}=c$.
2. Theorem. Let m be an integer. If m is odd, then m^{2} is odd.
3. Theorem. Let m be an integer. If m is even, then $m+5$ is odd.
4. Theorem. Let m and n be integers. If n is even, then $m n$ is even.
5. Theorem. For all integers m and n, if $m-n$ is even, then $m^{2}-n^{2}$ is even.
6. Theorem. There exists a real number x such that $|3 x-2|=-7 x$.
(7.) Theorem. For every real number $a>3$, there is a real number $x<0$ such that $|3 x-2|=-a x$.
8. Theorem. For every real number $y>0$, there is a real number $x<0$ such that $y^{2}+2 x y=-x^{2}$.
9. Theorem. For each real number x, there is a real number y that satisfies the equation $y^{2}-2 x y=2$.
10. Theorem. There is a real number $d>0$ such that for all real numbers x, if $|x-1|<d$, then $|3 x-3|<\frac{1}{2}$.
(11.) Theorem. For every integer n, if n is odd, then $\frac{n-1}{2}$ is an integer.
12. Theorem. Let a, b be integers where $a \neq 0$ or $b \neq 0$. There is an integer $n \geq 1$ of the form $n=s a+t b$ for some integers s, t.
(13. Theorem. For every integer i there is a unique integer j such that $3 j+9 i=6$.
14. Theorem. For every real number x there is a unique real number y such that $y x^{2}-3 x=-2 y$.
15. Theorem. There is a unique real number y such that $y x+6=2 x+3 y$ for every real number x.
16. Theorem. Let $c \leq 2$ be a real number. Suppose $x+y \leq x y$ for all real numbers x and y satisfying $x \geq c$ and $y \geq c$. Then $c=2$.

Exercise Notes: For Exercises 6 and 7, recall that $|y|= \pm y$ (see Definition 3.6.6). For Exercise 15, to prove uniqueness, note that if the equation $y x+6=2 x+3 y$ holds for every real number x, then the equation holds for $x=1$. For Exercise 16 , note that $2 \geq c$ and $c \geq c$.

3.5 Statements of the Form $P \wedge Q$

Consider the statement " P and Q." To show that this statement is true, we must show that P is true and show that Q is also true. We can now introduce a proof strategy for such "and" statements.

Proof Strategy 3.5.1. Given a diagram containing the form

