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Theorem 3.4.18. Let a,b be real numbers where a ̸= 0. Then there exists a unique
real number x satisfying ax+ b = 0.

Proof Analysis. We are given real numbers a and b with a ̸= 0. First we need to
prove that there exists a real number x that satisfies the equation ax+ b = 0; that is,
we need to prove that (∃x ∈R)(ax+b= 0). Afterwards, we must prove that there is
only one such solution. We use the uniqueness–Proof Strategy 3.4.17 to obtain the
following proof diagram where P(x) is the assertion that ax+ b = 0:

Existence:
Uniqueness:

Assume a,b ∈ R where a ̸= 0.
Prove (∃x ∈R)(ax+ b = 0).
Assume (ax+ b = 0)∧ (ay+ b = 0).

Prove x = y.

We apply the ∃-Proof Strategy 3.4.5(b) to obtain the diagram

Existence:

Uniqueness:

Assume a,b ∈ R where a ̸= 0.
Let x = (the value in R you found).

Prove ax+ b = 0.
Assume (ax+ b = 0)∧ (ay+ b = 0).

Prove x = y.

To find this x, we simply solve the equation ax+b = 0 for x and obtain x =− b
a . We

have our final proof diagram

Existence:

Uniqueness:

Assume a,b ∈ R where a ̸= 0.
Let x =− b

a .
Prove ax+ b = 0.

Assume (ax+ b = 0)∧ (ay+ b = 0).
Prove x = y.

This final diagram will guide our composition of the following proof. A⃝A⃝

Proof. Let a,b be real numbers where a ̸= 0. First we prove that there exists a real
number x satisfying ax+ b = 0. Then we will prove that such an x is unique.

Existence: Let x = − b
a . Since a ̸= 0, we see that x is a real number. Now, since

x =− b
a , using a little algebra we get ax+b= a(− b

a)+b = 0. Therefore, there is an
x satisfying ax+ b = 0.

Uniqueness: Suppose (1) ax+ b = 0 and (2) ay+ b = 0. We prove that x = y. From
(1) and (2) we see that ax+ b = ay+ b. Using algebra, we conclude that x = y. ⊓)

Exercises 3.4

Prove the following theorems:

1. Theorem. Let c ̸= 1 be a real number. There exists a unique real number x
satisfying x+1

x−2 = c.
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2. Theorem. Let m be an integer. If m is odd, then m2 is odd.
3. Theorem. Let m be an integer. If m is even, then m+ 5 is odd.
4. Theorem. Let m and n be integers. If n is even, then mn is even.
5. Theorem. For all integers m and n, if m− n is even, then m2− n2 is even.
6. Theorem. There exists a real number x such that |3x− 2|=−7x.
7. Theorem. For every real number a > 3, there is a real number x < 0 such that

|3x− 2|=−ax.
8. Theorem. For every real number y > 0, there is a real number x < 0 such that

y2 + 2xy =−x2.
9. Theorem. For each real number x, there is a real number y that satisfies the

equation y2− 2xy = 2.
10. Theorem. There is a real number d > 0 such that for all real numbers x, if

|x− 1|< d, then |3x− 3|< 1
2 .

11. Theorem. For every integer n, if n is odd, then n−1
2 is an integer.

12. Theorem. Let a,b be integers where a ̸= 0 or b ̸= 0. There is an integer n ≥ 1
of the form n = sa+ tb for some integers s, t.

13. Theorem. For every integer i there is a unique integer j such that 3 j+ 9i = 6.
14. Theorem. For every real number x there is a unique real number y such that

yx2− 3x =−2y.
15. Theorem. There is a unique real number y such that yx+6 = 2x+3y for every

real number x.
16. Theorem. Let c≤ 2 be a real number. Suppose x+ y≤ xy for all real numbers

x and y satisfying x≥ c and y≥ c. Then c = 2.

Exercise Notes: For Exercises 6 and 7, recall that |y| = ±y (see Definition 3.6.6).
For Exercise 15, to prove uniqueness, note that if the equation yx+6= 2x+3y holds
for every real number x, then the equation holds for x = 1. For Exercise 16, note that
2≥ c and c≥ c.

3.5 Statements of the Form P∧Q

Consider the statement “P and Q.” To show that this statement is true, we must show
that P is true and show that Q is also true. We can now introduce a proof strategy
for such “and” statements.

Proof Strategy 3.5.1. Given a diagram containing the form

Prove P∧Q
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