Negation Laws for Bounded Number Quantifiers

1. $\neg(\forall x > a)P(x) \Leftrightarrow (\exists x > a)\neg P(x).$ 2. $\neg(\exists x > a)P(x) \Leftrightarrow (\forall x > a)\neg P(x).$ 3. $\neg(\forall x < a)P(x) \Leftrightarrow (\exists x < a)\neg P(x).$ 4. $\neg(\exists x < a)P(x) \Leftrightarrow (\forall x < a)\neg P(x).$

Similar negation laws apply when the bounded number quantifiers involve the relations \leq and \geq . In the above laws, if you move the negation symbol through a bounded number quantifier, then the quantifier changes and the negation symbol completely passes over the relations x > a and x < a. For example, we can express $\neg(\forall x > 0)(x^2 > 1 \rightarrow x < 4)$ as a positive statement as follows:

$$\neg (\forall x > 0)(x^2 > 1 \to x < 4) \Leftrightarrow (\exists x > 0) \neg (x^2 > 1 \to x < 4) \quad \text{by QNL}$$
$$\Leftrightarrow (\exists x > 0)(x^2 > 1 \land x \not< 4) \quad \text{by CL}$$
$$\Leftrightarrow (\exists x > 0)(x^2 > 1 \land x \ge 4) \quad \text{by laws of inequality.}$$

Exercises 2.3 _____

- (1.) Using quantifier negation laws and propositional logic laws, translate each of the following assertions into positive statements. (The universe is \mathbb{R} .)
 - (a) $\neg(\forall x > 2)(x < 4 \rightarrow x^2 < 16).$
 - (b) $\neg(\forall x < 2)(x < 4 \rightarrow x^2 < 16).$
 - (c) $\neg (\exists x < 2)(x < 4 \land x^2 < 4).$
 - (d) $\neg (\exists x > 2)(x < 4 \land x^2 < 4).$
 - (e) $\neg (\forall x \in \mathbb{N})(x > 2 \rightarrow 3x < 2^x).$
 - (f) $\neg (\forall x \in \mathbb{N})(x > 4 \rightarrow 3x < 2^x).$
- 2. Express the negation of the following statement as a positive statement: For all real numbers x, if x is rational and positive, then \sqrt{x} is irrational. State your result in English. [The square root operation \sqrt{x} is defined on page 95.]
- 3. Consider the following statement and proposed negation of this statement. Statement: *Every prime number is odd*.

Proposed Negation: Every prime number is even.

Determine whether the proposed negation is correct. If it is not correct, then write a correct negation.

4. Using quantifier negation laws and propositional logic laws, express each statement in as a positive statement. (The universe is the set of real numbers.)

(a)
$$\neg(\forall x > 3)(|x - 10| < \frac{1}{2} \rightarrow |x^2 - 100| < \frac{1}{3}).$$

(b) $\neg(\exists x < -4)(|x+6| < \frac{1}{100} \land |\sin(x) - 100| \ge \frac{1}{30}).$