Negation Laws for Bounded Number Quantifiers

1. $\neg(\forall x>a) P(x) \Leftrightarrow(\exists x>a) \neg P(x)$.
2. $\neg(\exists x>a) P(x) \Leftrightarrow(\forall x>a) \neg P(x)$.
3. $\neg(\forall x<a) P(x) \Leftrightarrow(\exists x<a) \neg P(x)$.
4. $\neg(\exists x<a) P(x) \Leftrightarrow(\forall x<a) \neg P(x)$.

Similar negation laws apply when the bounded number quantifiers involve the relations \leq and \geq. In the above laws, if you move the negation symbol through a bounded number quantifier, then the quantifier changes and the negation symbol completely passes over the relations $x>a$ and $x<a$. For example, we can express $\neg(\forall x>0)\left(x^{2}>1 \rightarrow x<4\right)$ as a positive statement as follows:

$$
\begin{aligned}
\neg(\forall x>0)\left(x^{2}>1 \rightarrow x<4\right) & \Leftrightarrow(\exists x>0) \neg\left(x^{2}>1 \rightarrow x<4\right) & & \text { by QNL } \\
& \Leftrightarrow(\exists x>0)\left(x^{2}>1 \wedge x \nless 4\right) & & \text { by CL } \\
& \Leftrightarrow(\exists x>0)\left(x^{2}>1 \wedge x \geq 4\right) & & \text { by laws of inequality. }
\end{aligned}
$$

Exercises 2.3

(1.) Using quantifier negation laws and propositional logic laws, translate each of the following assertions into positive statements. (The universe is \mathbb{R}.)
(a) $\neg(\forall x>2)\left(x<4 \rightarrow x^{2}<16\right)$.
(b) $\neg(\forall x<2)\left(x<4 \rightarrow x^{2}<16\right)$.
(c) $\neg(\exists x<2)\left(x<4 \wedge x^{2}<4\right)$.
(d) $\neg(\exists x>2)\left(x<4 \wedge x^{2}<4\right)$.
(e) $\neg(\forall x \in \mathbb{N})\left(x>2 \rightarrow 3 x<2^{x}\right)$.
(f) $\neg(\forall x \in \mathbb{N})\left(x>4 \rightarrow 3 x<2^{x}\right)$.
2. Express the negation of the following statement as a positive statement: For all real numbers x, if x is rational and positive, then \sqrt{x} is irrational. State your result in English. [The square root operation \sqrt{x} is defined on page 95.]
(3.) Consider the following statement and proposed negation of this statement.

Statement: Every prime number is odd.
Proposed Negation: Every prime number is even.
Determine whether the proposed negation is correct. If it is not correct, then write a correct negation.
(4.) Using quantifier negation laws and propositional logic laws, express each statement in as a positive statement. (The universe is the set of real numbers.)
(a) $\neg(\forall x>3)\left(|x-10|<\frac{1}{2} \rightarrow\left|x^{2}-100\right|<\frac{1}{3}\right)$.
(b) $\neg(\exists x<-4)\left(|x+6|<\frac{1}{100} \wedge|\sin (x)-100| \geq \frac{1}{30}\right)$.

