Exercises 2.1 _

- **1** Let $\frac{p}{q}$ and $\frac{r}{s}$ be rational numbers where p, q, r, s are integers and q, s are nonzero. Suppose $\frac{p}{q} = \frac{r}{s}$ and $p \neq 0$. Using Definition 2.1.3, show that $\frac{ps}{qs} = \frac{pr}{ps}$.
- 2. Let R(x) be the predicate $x > \frac{1}{x}$. Indicate whether the statements R(2), R(-2), $R(\frac{1}{2})$, $R(-\frac{1}{2})$ are true or false. Now evaluate the following truth sets:
 - (a) $\{x \in \mathbb{R}^+ : x > \frac{1}{r}\}.$
 - (b) $\{x \in \mathbb{R}^- : x^2 > \frac{1}{r}\}.$
 - (c) $\{x \in \mathbb{Z} : x > \frac{1}{x} \text{ and } x > 2\}.$
 - (d) $\{x \in \mathbb{Z} : x > \frac{\tilde{1}}{x} \text{ and } x \neq 2\}$.
- 3. Let L(x, y) be the predicate "x < y." Determine if the following statements are true or false:
 - (a) $L(2,3) \to L(4,9)$.
 - (b) $L(-3,-2) \to L(9,4)$.
 - (c) $L(-2,-3) \to L(9,4)$.
- 4. Evaluate the truth sets:
 - (a) $\{x \in \mathbb{R} : x^2 < 9\}.$
 - (b) $\{x \in \mathbb{Z} : x^2 < 9\}.$
 - (c) $\{x \in \mathbb{R} : 2x + 9 \le 5\}.$
 - (d) $\{x \in \mathbb{R} : x > 0 \text{ and } x^3 < \frac{16}{x} \}.$

5. Let $\frac{p}{q}$ and $\frac{r}{s}$ be rational numbers where p, q, r, s are integers and q, s are nonzero. Suppose $\frac{p}{q} = \frac{r}{s}$. Using Definition 2.1.3, show that $\frac{2p+q}{2q} = \frac{2r+s}{2s}$.

2.2 Quantifiers

Given a statement P(x), which says something about the variable x, we want to express the fact that *every* element x in the universe makes P(x) true. In addition, we may want to express the fact that *at least one* element x in the universe makes P(x) true. To do this, we will form sentences using the quantifiers \forall and \exists . The quantifier \forall means "for all" and is called the *universal quantifier*. The quantifier \exists means "there exists" and is called the *existential quantifier*. For example, we can form the sentences

- 1. $\forall x P(x)$ [means "for all x, P(x)"].
- 2. $\exists x P(x)$ [means "there exists an *x* such that P(x)"].