CHEAT SHEET

DeMorgan's Laws

1. $\neg(P \vee Q) \Leftrightarrow \neg P \wedge \neg Q$
2. $\neg(P \wedge Q) \Leftrightarrow \neg P \vee \neg Q$

Commutative Laws

1. $P \wedge Q \Leftrightarrow Q \wedge P$
2. $P \vee Q \Leftrightarrow Q \vee P$

Associative Laws

1. $P \vee(Q \vee R) \Leftrightarrow(P \vee Q) \vee R$
2. $P \wedge(Q \wedge R) \Leftrightarrow(P \wedge Q) \wedge R$

Idempotent Laws

1. $P \wedge P \Leftrightarrow P$
2. $P \vee P \Leftrightarrow P$

Distribution Laws

1. $P \wedge(Q \vee R) \Leftrightarrow(P \wedge Q) \vee(P \wedge R)$
2. $P \vee(Q \wedge R) \Leftrightarrow(P \vee Q) \wedge(P \vee R)$
3. $(Q \vee R) \wedge P \Leftrightarrow(Q \wedge P) \vee(R \wedge P)$
4. $(Q \wedge R) \vee P \Leftrightarrow(Q \vee P) \wedge(R \vee P)$

Double Negation Law

1. $\neg \neg P \Leftrightarrow P$

Tautology Law

1. $P \wedge($ a tautology $) \Leftrightarrow P$

Contradiction Law

1. $P \vee($ a contradiction $) \Leftrightarrow P$

Conditional Laws

1. $(P \rightarrow Q) \Leftrightarrow(\neg P \vee Q)$
2. $(P \rightarrow Q) \Leftrightarrow \neg(P \wedge \neg Q)$
3. $\neg(P \rightarrow Q) \Leftrightarrow(P \wedge \neg Q)$

Contrapositive Law

1. $(P \rightarrow Q) \Leftrightarrow(\neg Q \rightarrow \neg P)$

Quantifier Negation Laws

1. $\neg \exists x P(x) \Leftrightarrow \forall x \neg P(x)$.
2. $\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$.
3. $\neg(\forall x \in A) P(x) \Leftrightarrow(\exists x \in A) \neg P(x)$.
4. $\neg(\exists x \in A) P(x) \Leftrightarrow(\forall x \in A) \neg P(x)$.
5. $\neg(\forall x<c) P(x) \Leftrightarrow(\exists x<c) \neg P(x)$.
6. $\neg(\exists x<c) P(x) \Leftrightarrow(\forall x<c) \neg P(x)$.

Inference Rules

$\begin{gathered} P \rightarrow Q \\ \frac{P}{\therefore Q} \end{gathered}$	(Modus Ponens)	$\begin{aligned} & \forall x(P(x) \rightarrow Q(x)) \\ & \frac{P(a)}{\therefore Q(a)} \end{aligned}$	(Universal Modus Ponens)
$\begin{aligned} & P \rightarrow Q \\ & \neg Q \\ & \therefore \neg P \end{aligned}$	(Modus Tolens)	$\begin{aligned} & \forall x(P(x) \rightarrow Q(x)) \\ & \neg Q(a) \\ & \therefore \neg P(a) \end{aligned}$	(Universal Modus Tolens)

Tarskian Predicates

- $T(x)$ means " x is a triangle." $C(x)$ means " x is a circle." $S(x)$ means " x is a square."
- $I(x)$ means " x is white." $G(x)$ means " x is gray." $B(x)$ means " x is black."
- $N(x, y)$ means " x is on the northern side of y."
- $W(x, y)$ means " x is on the western side of y."
- $K(x, y)$ means " x has the same color as y."

Truth Tables

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

P	$\neg P$
T	F
F	T

Interval Notation

For real numbers a and b we have the following.

1. The open interval (a, b) is defined to be $(a, b)=\{x \in \mathbb{R}: a<x<b\}$.
2. The closed interval $[a, b]$ is defined to be $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$.
3. The half-open interval $(a, b]$ is defined to be $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$.
4. The half-open interval $[a, b)$ is defined to be $[a, b)=\{x \in \mathbb{R}: a \leq x<b\}$.
5. The interval (a, ∞) is defined to be $(a, \infty)=\{x \in \mathbb{R}: a<x\}$.
6. The interval $(-\infty, a)$ is defined to be $(-\infty, a)=\{x \in \mathbb{R}: x<a\}$.
