DeMorgan's Laws

1. $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$

2. $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$

Commutative Laws

- 1. $P \land Q \Leftrightarrow Q \land P$
- $2. \ P \lor Q \Leftrightarrow Q \lor P$

Associative Laws

1. $P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

2. $P \land (Q \land R) \Leftrightarrow (P \land Q) \land R$

Idempotent Laws

- 1. $P \land P \Leftrightarrow P$
- 2. $P \lor P \Leftrightarrow P$

Distribution Laws

- 1. $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$
- 2. $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$
- 3. $(Q \lor R) \land P \Leftrightarrow (Q \land P) \lor (R \land P)$
- 4. $(Q \land R) \lor P \Leftrightarrow (Q \lor P) \land (R \lor P)$

Double Negation Law

1. $\neg \neg P \Leftrightarrow P$

Tautology Law

1. $P \land (a tautology) \Leftrightarrow P$

Contradiction Law

1. $P \lor (a \text{ contradiction}) \Leftrightarrow P$

Conditional Laws

- 1. $(P \to Q) \Leftrightarrow (\neg P \lor Q)$ 2. $(P \to Q) \Leftrightarrow \neg (P \land \neg Q)$ 3. $\neg (P \to Q) \Leftrightarrow (P \land \neg Q)$

Contrapositive Law

1. $(P \rightarrow Q) \Leftrightarrow (\neg Q \rightarrow \neg P)$

Quantifier Negation Laws

1.
$$\neg \exists x P(x) \Leftrightarrow \forall x \neg P(x)$$
.

2.
$$\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$$
.

- 3. $\neg(\forall x \in A)P(x) \Leftrightarrow (\exists x \in A)\neg P(x).$
- 4. $\neg(\exists x \in A)P(x) \Leftrightarrow (\forall x \in A)\neg P(x).$
- 5. $\neg(\forall x < c)P(x) \Leftrightarrow (\exists x < c)\neg P(x).$
- $6. \ \neg (\exists x < c) P(x) \Leftrightarrow (\forall x < c) \neg P(x).$

Inference Rules

$\boxed{\begin{array}{c} P \to Q \\ P \\ \hline \vdots Q \end{array}}$	(Modus Ponens)	$\frac{\forall x(P(x) \to Q(x))}{\stackrel{P(a)}{\ldots} Q(a)}$	(Universal Modus Ponens)
$\begin{array}{ c c c }\hline P \to Q \\ \hline \neg Q \\ \hline \vdots \neg P \end{array}$	(Modus Tolens)	$\frac{\forall x(P(x) \to Q(x))}{\frac{\neg Q(a)}{\therefore \neg P(a)}}$	(Universal Modus Tolens)

Tarskian Predicates

- T(x) means "x is a triangle." C(x) means "x is a circle." S(x) means "x is a square."
- I(x) means "x is white." G(x) means "x is gray." B(x) means "x is black."
- N(x, y) means "x is on the northern side of y."
- W(x, y) means "x is on the western side of y."
- K(x, y) means "x has the same color as y."

Truth Tables

P Q	$P \wedge Q$	P ($Q \parallel P \lor Q$	P Q	$P \rightarrow Q$		
T T	T	T T		T T	T	P	$ \neg P$
T F	F	T I	$T \parallel T$	T F	F	T	F
F T	F	F 7		F T	T	F	T
F F	F	F 1	$F \mid F$	F F	T		

Interval Notation

For real numbers a and b we have the following.

- 1. The open interval (a, b) is defined to be $(a, b) = \{x \in \mathbb{R} : a < x < b\}.$
- 2. The closed interval [a, b] is defined to be $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}.$
- 3. The half-open interval (a, b] is defined to be $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$.
- 4. The half-open interval [a, b) is defined to be $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$.
- 5. The interval (a, ∞) is defined to be $(a, \infty) = \{x \in \mathbb{R} : a < x\}$.
- 6. The interval $(-\infty, a)$ is defined to be $(-\infty, a) = \{x \in \mathbb{R} : x < a\}$.