Risk Assessment

- The process of estimating both the probability that an event will occur and the probable magnitude of its adverse effects.
- Based on Toxicology, Epidemiology,

Economics, and Social Factors

- Iterative process, not a one-time decision
- Must consider cumulative effects of all exposure (additive effect of multiple routes)
- Not all individuals have the same degree of risk to a given hazard
- Must balance likelihood of exposure with severity of consequences
- Low frequency / Catastrophic event (Bhopal)
- Low level exposure / Chronic heath problems

Comparative Risk Assessment

- Risk is in everything we do ! Lifetime risk of death from all causes is 100%
- Must compare one risk with others to place it in context. This does not by itself establish the acceptability of the risk.

Use Risk Assessment to ...

- Target Prevention Measures
- Perform Remediation
- Allocate Resources (Risk Management)
- Alter procedures
- Develop controls
- Risk Management - regulatory process which considers social, political, engineering and economic issues.

IN CLASS EXERCISE

- Rank the individual risk of anyone (not your personal risk, but generic risk) dying in a year from this activity/event/cause.
- \#1 Most risk
- \#30 Least risk

You have 20 minutes.

Perception of Risk

```
For this list of 20 items, assign a weight factor (1-9)
\(\checkmark\) Factor 1
\[
1 .
\]
```

\qquad

``` .9
- controllable or uncontrollable
- voluntary or involuntary
- non-fatal or fatal
\(\checkmark\) Factor 2
1 .
``` \(\qquad\)
```

- observable or unobservable
- immediate or delayed effect
- known or unknown
Again you have 20 minutes.

```

Clark R. Chapman and David Morrison, "Impacts on the Earth by asteroids and comets: assessing the hazard", Nature, v. 367, pp. 33-39, January 1994.

Table 3 Chances of dying from selected causes (USA)
Cause
Chances
- Motor vehicle accident
- Murder
- Fire
. 100

Firearms accident
Asteroid/comet impact (low limit)
- Electrocution
- Asteroid/comet impact
- Passenger aircraft crash
- Flood
- Tornado

Venomous bite or sting
- Asteroid/comet impact (high limit)
- Fireworks accident

Food poisoning by botulism
Drinking water with EPA limit of TCE 1 in 10 million
- It is "generally agreed" that a lifetime risk on the order of one in a million (in the range of \(10^{-6}-10^{-5}\)) is small enough to be acceptable to the general public
- Think about this - projected to 02/15/07 at 14:28 GMT (EST+5) there are 301,178,322 people in the U.S. - that is between 301-3,011 additional deaths over the average lifetime (\(\sim 70\) years) per cause
- For smaller exposed populations (workers at a chemical plant for example) a higher risk is may be considered tolerable \(\left(10^{-4}\right)\)

\section*{Public Perception of Risk}
- Voluntary risk is always more acceptable than involuntary risk!
- The same person who happily drives a car to work and back each day (about 1:100 lifetime odds of mortality) might be afraid of riding in a train \((1: 142,036)\) or horrified at the concept of drinking water containing the EPA limit of TCE (estimated to be \(1: 10,000,000\)).
- Regulatory reluctance to explicitly define "acceptable" risk - how much TCE do you think is acceptable in your water?

\section*{1. Hazard Assessment}
- Determine the nature of the hazard (in this case the toxin) and the extent of the harm.
- Review of all relevant data on agent and the specific threat under investigation
- Clinical studies of disease can identify large risks (1:10 or \(1: 100\))
- Epidemiological approaches detect risk down to \(1: 1,000\) or for very large studies \(1: 10,000\)
- The \(1: 1,000,000\) limit is estimated by extrapolating the effects from Toxicological Studies

\section*{2. Exposure Assessment}
- Exposure Pathway - the course a hazard takes from sources to receptor - via vehicle or vector (i.e. air, water, insect ...)
- Exposure Route - the method by which intake occurs (inhalation, injection, ...)
- Monitoring and Modeling used to arrive at an Exposure Concentration (dose)

Behavior can vary wildly from person to person so ...
Exposure Routes
EPA Standard Default Exposure Factors
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Exposure Pathway } & \multicolumn{1}{c|}{ Daily Intake } \\
\hline Ingestion of potable water & 2 L \\
\hline Ingestion of soil and dust & \begin{tabular}{l}
200 mg (child) \\
100 mg (adult)
\end{tabular} \\
\hline Inhalation of contaminants & \(20 \mathrm{~m}^{3}\) (total - adult) residential \\
\hline \begin{tabular}{l}
Consumption of homegrown \\
produce
\end{tabular} & \begin{tabular}{l}
42 g fruit \\
80 g vegetable
\end{tabular} \\
\hline \begin{tabular}{l}
Consumption of locally caught \\
fish
\end{tabular} & 54 g \\
\hline
\end{tabular}

Exposure to one toxin can occur via many different routes - Must examine cumulative result

\section*{Chemical Parameters used to estimate distribution in the environment}
- \(\mathrm{K}_{\text {ow }}\) - octanol-water partition coefficient
- \(\mathrm{K}_{\mathrm{oc}}\) - organic carbon partition coefficient
- \(\mathrm{K}_{\mathrm{d}}\) - soil-water distribution coefficient
- BCF - bioconcentration factor
- H - Henry's Law constant

Calculation of Absorbed Dose From Potential Dose:

Potential Dose \(=C \times I R \times E D\)
\(A T \times B W\)
Absorbed Dose \(=\) Potential Dose \(\times A F\)
Where:
\(C=\) Contaminant Concentration IR = Intake Rate
\(E D=\) Exposure Duration \(A T=\) Averaging Time
BW = Body Weight
\(A F=\) Fraction of Potential Dose Absorbed

Calculate the lifetime average daily potential dose of PCBs that a person would get from a daily average intake of 30 g of fish containing \(2.5 \mathrm{mg} / \mathrm{kg}\) of PCBs for 30 years.
- Express potential dose in units of \(\mathrm{mg} / \mathrm{kg}\) day (concern is cancer risk).

\section*{3. Potential Effects}
- Examination of toxicology and epidemiology reports
- Goal is to establish a mathematical relationship between amount of hazard/toxin and the risk of adverse outcomes from a specific dose.
- Most data available is from high dosage animal studies conducted over a short period of time - this needs to be converted into low dosage long term human
- Many mathematical models exist for this conversion - choice of model is a policy decision.

\section*{RfD}
- One approach used for toxins that have thresholds is the Reference Dose (RfD)
- The dose of toxin per unit body weight per day (\(\mathrm{mg} \mathrm{kg}^{-1} \mathrm{day}^{-1}\)) that is likely to pose no appreciable risk to human populations, including sensitive individuals.
\[
R f D=\quad \underline{N O A E L}
\]
\[
S \overline{S F_{1} \times S F_{2}} \times \ldots
\]
(Organizations other than the EPA call this the ADI or acceptable daily intake)
\begin{tabular}{|ll|}
\hline & RfD \\
1. & \begin{tabular}{l}
Select the most sensitive/applicable species for \\
which adequate studies are available (human \\
data is always given priority) \\
2.
\end{tabular} \\
\begin{tabular}{l}
Establish exposure route (RfDs are route \\
specific)
\end{tabular} \\
3. & Gather supporting studies/information \\
4. & \begin{tabular}{l}
Identify the NOAEL, or if such data is not \\
available, the LOAEL for the most sensitive \\
endpoint
\end{tabular} \\
\hline
\end{tabular}

\section*{RfD}

\section*{5. Apply Safety Factors}

Adjust by
\(\div 10\) to include most sensitive populations (children, elderly ...)
\(\div 10\) when extrapolating from animals to humans
\(\div 10\) when using sub-chronic instead of chronic study data
\(\div 10\) when using a LOAEL instead of a NOAEL

\section*{Example ...}
- In a subchronic oral toxicity study in mice, a lowest observed adverse effect level (LOAEL) of \(5 \mathrm{mg} / \mathrm{kg}\).day was determined for a specific agent. The quality of the data is rated as high. What is the RfD ?
- Solution

\(\underline{\text { Safety Factor }}\) 1010Extrapolation from subchronic to chronic10

Extrapolation from LOAEL to NOAEL 10
\(\operatorname{RfD} \quad=(5 \mathrm{mg} / \mathrm{kg} \cdot\) day \() /(10 \times 10 \times 10 \times 10 \times 1)\) \(=0.5 \square \mathrm{~g} / \mathrm{kg} \cdot d a y\)

Using RfDs
Calculation of non-carcinogenic risk
Hazard Quotant (HQ) for a single substance
Hazard Index (HI) for multiple substances
\(\mathrm{HQ}=\) Average daily dose (mg/kg.day)
RfD (\(\mathrm{mg} / \mathrm{kg} \cdot\) day)
\(\mathrm{HI}=\mathrm{HQ}+\mathrm{HQ}+\mathrm{HQ} \ldots+\mathrm{HQ}\)
\(\mathrm{HI} / \mathrm{HQ}\) less than 1.0 is "not unacceptable"

\section*{Solution}
\begin{tabular}{lccc}
& \begin{tabular}{c}
C \\
\((\mathrm{mg} / \mathrm{L})\)
\end{tabular} & \begin{tabular}{c}
Dose \\
\((\mathrm{mg} / \mathrm{kg} \cdot\) day \()\)
\end{tabular} & \begin{tabular}{c}
Hazard Ratio \\
\((\) dose \(/ \mathrm{RfD})\)
\end{tabular} \\
Cyanide & 0.03 & \(8.57 \times 10^{-4}\) & 0.04 \\
Nickel & 0.12 & \(3.43 \times 10^{-3}\) & 0.17 \\
Chromium & 12.4 & 0.35 & \(\underline{0.35}\) \\
& & & 0.56
\end{tabular}
0.56 is less than 1.0 , therefore this is "not unacceptable"

\section*{Chronic Daily Intake (CDI)}
- The average exposure/dose over a lifetime normalized to daily amounts
\(\mathrm{CDI}=\underline{(\text { concentration }) \mathrm{x} \text { (intake rate) } \mathrm{x}(\text { days of exposure/lifetime) }}\) (lifetime)

CDI \((\mathrm{mg} / \mathrm{kg} \cdot\) day \()=\) "Average daily dose \((\mathrm{mg} / \mathrm{kg}) "\) Body weight (kg)

\section*{CDI}
- Chronic Daily Intake and RfD can be used to estimate non-cancer risk as follows
RISK = PF (CDI - RfD)
\(\mathrm{PF}=\) potency factor - slope of dose response curve also called slope factor (SF)
(see www.epa.gov/iris)

RISK =
PF (\(3.36 \times 10^{-4} \mathrm{mg} / \mathrm{kg} \cdot\) day \(-1.00 \times 10^{-4} \mathrm{mg} / \mathrm{kg}\).day)
\(\mathrm{PF}=1.1 \times 10^{-2} \mathrm{~kg} \cdot\) day \(/ \mathrm{mg}\)
Risk \(=1.1 \times 10^{-2} \mathrm{~kg} \cdot\) day \(/ \mathrm{mg} \mathrm{x}\left(2.36 \times 10^{-4} \mathrm{mg} / \mathrm{kg} \cdot d a y\right)\)
RISK \(=2.6 \times 10^{-6}\) or 2.6 in a million
This calculation is actually pretty rare - usually
For non-cancerous contaminants the risk is assumed zero if the \(\mathrm{CDI} \leq \operatorname{RfD}\).
\begin{tabular}{|l|}
\hline Using CDI to calculate cancer risk \\
Incremental lifetime cancer risk based on \\
certain exposure: \\
RISK \(=(\mathrm{PF} \times \mathrm{CDI})\) \\
Assuming a linear dose-response relationship \\
\end{tabular}

\section*{Example}
- Calculate CDI for a person eating locally caught fish from waters containing \(100 \mathrm{ppb}(0.1 \mathrm{mg} / \mathrm{L}) \mathrm{TCE}\); bioconcentration TCE in fish \(=1.06 \mathrm{mg}\) TCE per kg fish. Fish is only exposure.

Std. \(\operatorname{Exp}=70 \mathrm{~kg}\) person eats 54 g of fish for 350 days/yr for 30 years \(\mathrm{CDI}=\)
\(\quad(.054 \mathrm{~kg}\) fish \() \times(1.06 \mathrm{mg} \mathrm{TCE} / \mathrm{kg}\) fish \() \times(350\) days \(/ \mathrm{yr}) \times(30\) years \()\)
\(70 \mathrm{~kg} \times 70\) year lifespan x 365 days/yr
Spread over lifetime
\(\mathrm{CDI}=3.36 \times 10^{-4}(\mathrm{mg} / \mathrm{kg} \cdot\) day \()\)

\section*{Cancer Risks}
```

Group Category
A Human carcinogen
Probable human carcinoge
B B1 indicates limited human evidence;
B2 indicates sufficient evid
Possible human carcinogen
D Not classifiable as to human carcinogenicity
Evidence of noncarcinogenicity for humans

```

\section*{Example}
- If our fish also contained 1.06 mg of Aniline, what would the cancer risk be ?

Std. Exp \(=70 \mathrm{~kg}\) person eats 54 g of fish for 350 days \(/ \mathrm{yr}\) for 30 years
\(\mathrm{CDI}=\)
(. 054 kg fish \() \mathrm{x}(1.06 \mathrm{mg}\) Aniline \(/ \mathrm{kg}\) fish \() \mathrm{x}(350\) days \(/ \mathrm{yr}) \mathrm{x}(30 \mathrm{yr})\)
\(70 \mathrm{~kg} \times 70\) year lifespan x 365 days/yr

CDI is still \(=3.36 \times 10^{-4}(\mathrm{mg} / \mathrm{kg} \cdot\) day \()\)
Example
\(\mathrm{CDI}=3.36 \times 10^{-4}(\mathrm{mg} / \mathrm{kg} \cdot \mathrm{day})\)
\(\mathrm{PF}=5.7 \times 10^{-3}(\mathrm{~kg} \cdot \mathrm{day} / \mathrm{mg})\)
RISK \(=\mathrm{PF} \times \mathrm{CDI}\)
Risk \(=3.36 \times 10^{-4}(\mathrm{mg} \mathrm{kg} \cdot \mathrm{day}) \times 5.7 \times 10^{-3}(\mathrm{~kg} \cdot\) day \(/ \mathrm{mg})\)
Risk \(=1.9 \times 10^{-6}\) or 1.9 in a million
```

